源码:https://github.com/keras-team/keras/blob/master/examples/imdb_bidirectional_lstm.py 及keras中文文档 1.imdb数据集 数据集来自 IMDB 的 25,000 条电影评论,以情绪(正面/负面 ...
需要学习链接: 使用pandas做预处理,https: blog.csdn.net mpk no article details https: www.jianshu.com p d f c .想法: .首先是要读取数据集,建立字典,将word转为id准备输入 .想获取数据文本的长度分布,然后做截断,但不知道怎么写 但是链接中考虑的更全面 .去掉非ASCII字符, .去掉换行符, .转换为小写。 ...
2020-03-03 00:26 0 634 推荐指数:
源码:https://github.com/keras-team/keras/blob/master/examples/imdb_bidirectional_lstm.py 及keras中文文档 1.imdb数据集 数据集来自 IMDB 的 25,000 条电影评论,以情绪(正面/负面 ...
网络结构: 代码如下: 测试的误差和准确率: Final test loss and accuracy : [1.3201157276447002, 0.80188304] 下一次更新:LSTM情感分类问题 ...
笔记摘抄 提前安装torchtext和scapy,运行下面语句(压缩包地址链接:https://pan.baidu.com/s/1_syic9B-SXKQvkvHlEf78w 提取码:ahh3): ...
目录 Sentiment Analysis Two approaches Single layer Multi-layers Se ...
接着上一篇。在正式的尝试使用文本分类算法分类文本的时候,我们得先准备两件事情: 一,准备适量的训练文本;二,选择合适的方法将这些训练文本进行表示(也就是将文本换一种方式表示) 大家都知道文本其实就是很多词组成的文章啊。所以很自然的就想到用一系列词来表示文本。比如我这篇文章,将其分词之后 ...
直接从特征提取,跳到了BoostSVM,是因为自己一直在写程序,分析垃圾文本,和思考文本分类用于识别垃圾文本的短处。自己学习文本分类就是为了识别垃圾文本。 中间的博客待自己研究透彻后再补上吧。 因为获取垃圾文本的时候,发现垃圾文本不是简单的垃圾文本,它们具有多个特性: 1. 种类繁多 ...
IMDB数据集下载速度慢,可以在我的repo库中找到下载,下载后放到~/.keras/datasets/目录下,即可正常运行。)中找到下载,下载后放到~/.keras/datasets/目录下,即可正常运行。 电影评论分类:二分类 二分类可能是机器学习最常解决的问题。我们将基于评论的内容将电影 ...
作者:JSong 时间:2018.01.14 评分卡可以用来预测客户的好坏。当一个评分卡已经构建完成,并且有一组个人分数和其对应的好坏状态的数据时,我们想知道所构建的评分卡是否可靠?可靠程度如何?而这取决于如何去定义这个“好”字。一般有三种角度可以来评估: 评分卡分类划分的准确程度 ...