风格迁移: 在内容上尽量与基准图像保持一致,在风格上尽量与风格图像保持一致。 1. 使用预训练的VGG19网络提取特征 2. 损失函数之一是“内容损失”(content loss),代表合成的图像的特征与基准图像的特征之间的L2距离,保证生成的图像内容和基准图像保持一致。 3. ...
样式迁移 如果你是一位摄影爱好者,也许接触过滤镜。它能改变照片的颜色样式,从而使风景照更加锐利或者令人像更加美白。但一个滤镜通常只能改变照片的某个方面。如果要照片达到理想中的样式,经常需要尝试大量不同的组合,其复杂程度不亚于模型调参。 在本节中,我们将介绍如何使用卷积神经网络自动将某图像中的样式应用在另一图像之上,即样式迁移 style transfer 。这里我们需要两张输入图像,一张是内容图像 ...
2020-02-23 23:12 0 5154 推荐指数:
风格迁移: 在内容上尽量与基准图像保持一致,在风格上尽量与风格图像保持一致。 1. 使用预训练的VGG19网络提取特征 2. 损失函数之一是“内容损失”(content loss),代表合成的图像的特征与基准图像的特征之间的L2距离,保证生成的图像内容和基准图像保持一致。 3. ...
图像风格迁移 最后要生成的图片是怎样的是难以想象的,所以朴素的监督学习方法可能不会生效, Content Loss 根据输入图片和输出图片的像素差别可以比较损失 \(l_{content} = \frac{1}{2}\sum (C_c-T_c)^2\) Style Loss 从中间提取 ...
所谓图像风格迁移,是指利用算法学习著名画作的风格,然后再把这种风格应用到另外一张图片上的技术。著名的图像处理应用Prisma是利用风格迁移技术,普通用户的照片自动变换为具有艺术家风格的图片。 一、图像风格迁移的原理 1、原始图像风格迁移的原理 在学习原始的图像风格迁移之前,可以在先 ...
所谓风格迁移,其实就是提供一幅画(Reference style image),将任意一张照片转化成这个风格,并尽量保留原照的内容(Content)。之前比较火的修图软件Prisma就提供了这个功能。我觉得这一说法可以改成风格迁移,将一张图的风格迁移到另一张图片上,也可以理解为生成问题,根据两种 ...
一、风格迁移简介 风格迁移(Style Transfer)是深度学习众多应用中非常有趣的一种,如图,我们可以使用这种方法把一张图片的风格“迁移”到另一张图片上: 然而,原始的风格迁移(论文地址:https://arxiv.org/pdf/1508.06576v2.pdf)的速度是非常慢 ...
易于使用的神经风格迁移框架 pystiche。 将内容图片与艺术风格图片进行融合,生成一张具有特定风格的新图,这种想法并不新鲜。早在 2015 年,Gatys、 Ecker 以及 Bethge 开创性地提出了神经风格迁移(Neural Style Transfer ,NST ...
作者:Longway Date:2020-04-25 来源: 单图像三维重建、2D到3D风格迁移和3D DeepDream 项目网址:http://hiroharu-kato.com/projects_en ...
基于深度卷积神经网络的图像风格迁移与神经涂鸦系统的设计与实现 【摘要】深度卷积神经网络提取图像特征的机器学习方法目前被应用到各类图像处理问题中,该方法可以很好地识别分析图像,是人工智能领域的一个重要分支。 本文中设计并实现了一款基于卷积神经网络的图像风格迁移系统,可以通过神经表示来分离 ...