一、概念 余弦相似度: 余弦距离:1-cos(A,B) 欧式距离: 二、两者之间的关系 当向量的模长是经过归一化的,此时欧氏距离与余弦距离有着单调的关系: 在此场景下,如果选择距离最小(相似度最大)的近邻,那么使用余弦相似度和欧氏距离的结果是相同的。 推导 ...
什么是余弦距离 余弦距离 余弦相似度 余弦相似度计算方法如下 余弦距离的值域 , 一般深度学习用余弦相似度作为预测值 什么是欧式距离 欧氏距离与余弦距离的选择 总体来说 欧氏距离体现数值上的绝对差异,而余弦距离体现方向上的相对差异 关注绝对误差的时候,选欧式距离 例如分析用户活跃度,以登陆次数 单位:次 和平均观看时长 单:分钟 作为特征时,余弦距离会认为 , , 两个用户距离很近 但显然这两个用 ...
2020-02-22 16:53 0 645 推荐指数:
一、概念 余弦相似度: 余弦距离:1-cos(A,B) 欧式距离: 二、两者之间的关系 当向量的模长是经过归一化的,此时欧氏距离与余弦距离有着单调的关系: 在此场景下,如果选择距离最小(相似度最大)的近邻,那么使用余弦相似度和欧氏距离的结果是相同的。 推导 ...
1)概述 两者都是评定个体间差异的大小的。欧几里得距离度量会受指标不同单位刻度的影响,所以一般需要先进行标准化,同时距离越大,个体间差异越大; 空间向量余弦夹角的相似度度量不会受指标刻度的影响,余弦值落于区间[-1,1],值越大,差异越小。 2)计算公式 欧氏距离(也叫欧几里得 ...
1.余弦距离 适用场景:余弦相似度衡量的是维度间取值方向的一致性,注重维度之间的差异,不注重数值上的差异。 举例:如某T恤从100块降到了50块(A(100,50)),某西装从1000块降到了500块(B(1000,500)),那么T恤和西装都是降价了50%,两者的价格变动趋势一致,可以用余弦 ...
在数据分析和挖掘的过程中,为了知道个体间差异的大小,我们需要去评价个体之间的相似性,数据的挖掘方法可以分为分类和聚类,如KNN和KMeans. 而衡量个体差异的方法主要分为两种,距离度量——欧式距离,相似度度量——余弦距离。 1、欧式距离 衡量个体在空间上存在的距离,距离越远说明 ...
1、余弦距离 余弦距离,也称为余弦相似度,是用向量空间中两个向量夹角的余弦值作为衡量两个个体间差异的大小的度量。 向量,是多维空间中有方向的线段,如果两个向量的方向一致,即夹角接近零,那么这两个向量就相近。而要确定两个向量方向是否一致,这就要用到余弦定理计算向量的夹角。 余弦定理描述了三角形 ...
原文链接 一、余弦距离 简单来说,余弦相似度,就是计算两个向量间的夹角的余弦值。余弦距离就是用1减去这个获得的余弦相似度。余弦距离取值范围由上面的余弦距离可以知道,余弦距离的取值范围为[0,2] ,这就满足了非负性的性质。 二、欧式距离 欧式距离之前提过了,就是常用的距离计算公式 ...
link 欧氏距离 标准化欧氏距离 马氏距离 夹角余弦距离 汉明距离 曼哈顿(Manhattan)距离 ...
1 余弦相似度 余弦相似度是通过测量两个向量之间的夹角的余弦值来度量他们之间的一个相似度.0度角的余弦值是1,其他的任何角度的余弦值都不大于1,最小值是-1,从而两个向量之间角度的余弦值确定了两个向量是否指向同一个方向.两个向量的指向相同时,余弦相似度为1,当两个向量的夹角是90度时,余弦 ...