贝叶斯理论应用于机器学习方面产生了多种不同的方法和多个定理,会让人有些混淆。主要有最大后验概率,极大似然估计(MLE),朴素贝叶斯分类器,还有一个最小描述长度准则。 贝叶斯理论是基于概率的理论,设\(\lambda_{ij}\)是将实为\(c_j\)的样本标记为\(c_i\)的损失,则将 ...
Frequentist VS Bayesian 在机器学习领域分为两个流派,分别是贝叶斯派和频率派。两种学派所基于的理论背景不同,应用场景也不尽相同。本文就以阅读PRML为背景,对学习所悟进行总结。 对于一些问题,比如类似从盒子中抽取小球的经典问题,我们可以通过多次实验的方式来计算频率,并进而估算概率,这种思想是典型的Frequentist的思想 而对于另一些问题,如南极大陆在本世纪末完全融化的可 ...
2020-02-10 16:46 0 1174 推荐指数:
贝叶斯理论应用于机器学习方面产生了多种不同的方法和多个定理,会让人有些混淆。主要有最大后验概率,极大似然估计(MLE),朴素贝叶斯分类器,还有一个最小描述长度准则。 贝叶斯理论是基于概率的理论,设\(\lambda_{ij}\)是将实为\(c_j\)的样本标记为\(c_i\)的损失,则将 ...
最近一直在看机器学习相关的算法,今天我们学习一种基于概率论的分类算法—朴素贝叶斯。本文在对朴素贝叶斯进行简单介绍之后,通过Python编程加以实现。 一 朴素贝叶斯概述 ...
的条件下都是条件独立的。 1、朴素贝叶斯朴素在哪里? 简单来说:利用贝叶斯定理求解联合概率P( ...
0.什么是贝叶斯? 贝叶斯公式是由一位数学家——托马斯·贝叶斯提出的,也称为贝叶斯法则, 他在许许多多的领域都有所应用,我们也在许多数学课程中学习过他。 这就是说,当你不能准确知悉一个事物的本质时,你可以依靠与事物特定本质相关的事件出现的多少去判断其本质属性的概率。 用数学语言表达就是:支持 ...
概率分类器: 朴素贝叶斯是一种直接衡量标签和特征质检的概率关系的有监督学习算法, 是一种专注分类的算法, 朴素贝叶斯的算法根源是基于概率论和数理统计的贝叶斯理论, 因此它是根正苗红的概率模型. 关键概念: 联合概率: X取值为x和Y的取值为y, 两个事件同时发生的概率, 表示 ...
0. 前言 这是一篇关于贝叶斯方法的科普文,我会尽量少用公式,多用平白的语言叙述,多举实际例子。更严格的公式和计算我会在相应的地方注明参考资料。贝叶斯方法被证明是非常 general 且强大的推理框架,文中你会看到很多有趣的应用。 1. 历史 托马斯·贝叶斯(Thomas Bayes)同学 ...
简介 朴素贝叶斯是一种基于概率进行分类的算法,跟之前的逻辑回归有些相似,两者都使用了概率和最大似然的思想。但与逻辑回归不同的是,朴素贝叶斯通过先验概率和似然概率计算样本在每个分类下的概率,并将其归为概率值最大的那个分类。朴素贝叶斯适用于文本分类、垃圾邮件处理等NLP下的多分类问题。 核心 ...
频率派 \(vs\) 贝叶斯派 一、前言 在使用各种概率模型时,比如极大似然估计 \(logP(X|\theta)\),已经习惯这么写了,可是为什么这么写?为什么X在前,为什么 \(\theta\) 在后,分别代表了什么?这些更深一层的逻辑和理由不是特别清晰,故此梳理一下频率 ...