再探快速傅里叶变换(FFT)学习笔记(其三)(循环卷积的Bluestein算法+分治FFT+FFT的优化+任意模数NTT) 目录 再探快速傅里叶变换(FFT)学习笔记(其三)(循环卷积的Bluestein算法+分治FFT+FFT的优化+任意模数NTT ...
再探快速傅里叶变换 FFT 学习笔记 其三 循环卷积的Bluestein算法 分治FFT FFT的优化 任意模数NTT 写在前面 为了不使篇幅过长,预计将把学习笔记分为四部分: DFT,IDFT,FFT的定义,实现与证明:快速傅里叶变换 FFT 学习笔记 其一 NTT的实现与证明:快速傅里叶变换 FFT 学习笔记 其二 任意模数NTT与FFT的优化技巧 多项式相关操作 一些约定 p x begin ...
2020-02-09 16:15 0 255 推荐指数:
再探快速傅里叶变换(FFT)学习笔记(其三)(循环卷积的Bluestein算法+分治FFT+FFT的优化+任意模数NTT) 目录 再探快速傅里叶变换(FFT)学习笔记(其三)(循环卷积的Bluestein算法+分治FFT+FFT的优化+任意模数NTT ...
FFT 的优化和任意模数 FFT 目录 FFT 的优化和任意模数 FFT 1. 前言和前置技能 2. 合并 3. 分裂 4. 任意模数FFT 1. 前言和前置技能 这篇主要讲卡常如何卡到uoj榜第二页,以及任意 ...
再探快速傅里叶变换(FFT)学习笔记(其一) 目录 再探快速傅里叶变换(FFT)学习笔记(其一) 写在前面 为什么写这篇博客 一些约定 前置知识 多项式卷积 多项式 ...
FFT 快速傅里叶变换学习笔记 前言 由于老吕以及 dsr 巨巨的讲解,将FFT学习了一下可能以后很大几率都用不到,为了防止自己忘了,趁自己还有点记忆总结一下,可能理解的不深,或有错误,请不吝赐教。 定义 快速傅里叶变换 (fast Fourier transform), 即利用 ...
一、引入 首先,定义多项式的形式为 \(f(x)=\sum_{i=0}^n a_ix^i\),其中 \(a_i\) 为系数,\(n\) 为次数,这种表示方法称为“系数表示法”,一个多项式是由其系数确 ...
背景 据说是高斯发明的 考虑从六年级开始学的多项式相乘,需要将所有项相乘并打开,时间复杂度\(O(n^2)\).FFT能在\(O(nlogn)\)时间复杂度内解决这一问题.由于整数可以被拆成系数与进制幂之积的和,所以大整数乘法也可以用FFT加速. 表示法 一种显然的加速方式:在学习拉格朗日 ...
其他多项式算法传送门: [多项式算法](Part 1)FFT 快速傅里叶变换 学习笔记 [多项式算法](Part 2)NTT 快速数论变换 学习笔记 [多项式算法](Part 4)FWT 快速沃尔什变换 学习笔记 [多项式算法](Part 5)分治FFT 学习笔记 ...