原文:《机器学习(周志华)》笔记--决策树(2)--划分选择:信息熵、信息增益、信息增益率、基尼指数

四 划分选择 属性划分选择 构造决策树的关键是如何选择最优划分属性。一般而言,随着划分过程不断进行,我们希望决策树的分支结点所包含的样本尽可能属于同一类别,即结点的 纯度 越来越高。 常用属性划分的准则: ID :信息增益 C . :增益率 CART:基尼指数 直观上,如果一个特征具有更好的分类能力,或者说,按照这一特征将训练数据集分割成子集,使得各个子集在当前条件下有最好的分类,那么就更应该选择 ...

2020-02-03 18:23 0 1928 推荐指数:

查看详情

机器学习(二)-信息熵,条件信息增益信息增益比,系数

一、信息熵的简介 2.1 信息的概念 信息是用来消除随机不确定性的东西。对于机器学习中的决策树而言,如果待分类的事物集合可以划分为多个类别当中,则第k类的信息可以定义如下: 2.2 信息熵概念 信息熵是用来度量不确定性,当越大,k的不确定性越大,反之越小。假定当前样本集合D中第k类 ...

Thu Nov 28 18:39:00 CST 2019 0 820
决策树算法-信息熵-信息增益-信息增益-GINI系数-转

1. 算法背景介绍 分类决策树)是一种十分常用的分类方法。他是一种监管学习,所谓监管学习说白了很简单,就是给定一堆样本,每个样本都有一组属性和一个类别,这些类别是事先确定的,那么通过学习得到一个分类器,这个分类器能够对新出现的对象给出正确的分类。这样的机器学习就被称之为监督学习。分类本质上 ...

Wed Aug 17 02:41:00 CST 2016 1 8642
信息增益信息增益比、指数的比较

ID3、C4.5和CART三种经典的决策树模型分别使用了信息增益信息增益比和指数作为选择最优的划分属性的准则来构建决策树。以分类来说,构建决策树的过程就是从根节点(整个数据集)向下进行节点分裂(划分数据子集)的过程,每次划分需要让分裂后的每个子集内部尽可能包含同一类样本。信息增益信息增益 ...

Sun Jun 07 07:08:00 CST 2020 0 2341
决策树(一):原理&&条件&信息增益

1.决策树思想:以信息增益作为指标,得出最高效的一种决策方案,可用于回归或者分类问题。【由if-else演化而来,后续可发展成机器学习中的随机森林算法】 2.决策树指标: 香农:消除随机不确定性的东西。 信息熵:定量表示(某种事物)随机不确定性的大小。 样本:假设一个人身上有四种 ...

Thu Apr 30 06:51:00 CST 2020 0 580
决策树--信息增益信息增益比,Geni指数的理解

决策树 是表示基于特征对实例进行分类的树形结构 从给定的训练数据集中,依据特征选择的准则,递归的选择最优划分特征,并根据此特征将训练数据进行分割,使得各子数据集有一个最好的分类的过程。 决策树算法3要素 ...

Sat Mar 18 00:05:00 CST 2017 5 58976
决策树 - ,信息增益的计算

故事从一条小学数学题说起 "爸爸,熊猫为什么是3个不是11个" "宝贝,你还没学二进制好吗....." 以上故事纯属虚构,真实的对话其实是这样的 "爸爸, 为什么3比4小" "宝贝,数一 ...

Thu Dec 01 04:43:00 CST 2016 4 9916
[机器学习]信息&&信息增益

关于对信息信息增益信息论里的概念,是对数据处理的量化,这几个概念主要是在决策树里用到的概念,因为在利用特征来分类的时候会对特征选取顺序的选择,这几个概念比较抽象,我也花了好长时间去理解(自己认为的理解),废话不多说,接下来开始对这几个概念解释,防止自己忘记的同时,望对其他人有个借鉴的作用 ...

Wed Jun 17 05:08:00 CST 2015 1 27398
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM