概述 这一节主要介绍一下TensorFlow在应用的过程中的几个小的知识点,第一个是关于features的处理的,例如Bucketized (Binned) Features 和 Feature scalling。第二个是简单的介绍一下常用的几个Optimizer之间的区别,例如SGD ...
概述 前面几节讲的是linear regression的内容,这里咱们再讲一个非常常用的一种模型那就是classification,classification顾名思义就是分类的意思,在实际的情况是非常常用的,例如咱们可以定义房价是否过高,如果房价高于 万,则房价过高,设置成true 如果房价低于 万,则房价不高,target就可以设置成false。这里的target就只有 种,分别只有True ...
2020-02-01 22:45 1 1077 推荐指数:
概述 这一节主要介绍一下TensorFlow在应用的过程中的几个小的知识点,第一个是关于features的处理的,例如Bucketized (Binned) Features 和 Feature scalling。第二个是简单的介绍一下常用的几个Optimizer之间的区别,例如SGD ...
1. 概述 在情感分析的应用领域,例如判断某一句话是positive或者是negative的案例中,咱们可以通过传统的standard neuro network来作为解决方案,但是传统的神经网络在应用的时候是不能获取前后文字之间的关系的,不能获取到整个句子的一个整体的意思,只能通过每一个 ...
概述 LSTM在机器学习上面的应用是非常广泛的,从股票分析,机器翻译 到 语义分析等等各个方面都有它的用武之地,经过前面的对于LSTM结构的分析,这一节主要介绍一些LSTM的一个小应用,那就是sequence generation。其实sequence generation本事也是 ...
原文链接:https://developers.google.com/machine-learning/crash-course/classification/ 1- 指定阈值 为了将逻辑回归值映射到二元类别,必须指定分类阈值(也称为判定阈值)。如果值高于该阈值,则表示“1”;如果值低于该阈值 ...
机器学习基础ROC曲线理解 一、总结 一句话总结: ROC曲线的全称是Receiver Operating Characteristic Curve,中文名字叫“受试者工作特征曲线”,顾名思义,就是评估物品性能。 1、ROC曲线起源? a、ROC曲线起源于第二次世界大战时期雷达兵 ...
一、基础理解 1)定义 ROC(Receiver Operation Characteristic Curve) 定义:描述 TPR 和 FPR 之间的关系; 功能:应用于比较两个模型的优劣; 模型不限于是否通过极度偏斜的数据训练所得; 比较方式 ...
在机器学习领域,如果把Accuracy作为衡量模型性能好坏的唯一指标,可能会使我们对模型性能产生误解,尤其是当我们模型输出值是一个概率值时,更不适宜只采取Accuracy作为衡量模型性泛化能的指标.这篇博文会为大家介绍两种比较二分决策模型性能的方法PR曲线, ROC曲线 预测概率 对于分类问题 ...
1. 分类器评估指标 对于二分类问题,可将样例根据其真实类别和分类器预测类别划分为:真正例(True Positive,TP):真实类别为正例,预测类别为正例。假正例(False Positive, ...