一、预备知识 1、凸函数 凸函数:对于一元函数f(x),如果对于任意tϵ[0,1]均满足 f(tx1+(1−t)x2) ≤ tf(x1)+(1−t)f(x2) 。 凸函数特征: (1)凸函数的割线在函数曲线的上方。 (2)凸函数具有唯一的极小值,该极小值 ...
四 逻辑回归 逻辑回归是属于机器学习里面的监督学习,它是以回归的思想来解决分类问题的一种非常经典的二分类分类器。由于其训练后的参数有较强的可解释性,在诸多领域中,逻辑回归通常用作baseline模型,以方便后期更好的挖掘业务相关信息或提升模型性能。 逻辑回归思想 当一看到 回归 这两个字,可能会认为逻辑回归是一种解决回归问题的算法,然而逻辑回归是通过回归的思想来解决二分类问题的算法。 逻辑回归的基 ...
2020-02-01 10:40 0 751 推荐指数:
一、预备知识 1、凸函数 凸函数:对于一元函数f(x),如果对于任意tϵ[0,1]均满足 f(tx1+(1−t)x2) ≤ tf(x1)+(1−t)f(x2) 。 凸函数特征: (1)凸函数的割线在函数曲线的上方。 (2)凸函数具有唯一的极小值,该极小值 ...
一:分类 (一)分类基础 在分类问题中,你要预测的变量y是离散的值,我们将学习一种叫做逻辑回归 (Logistic Regression) 的算法,这是目前最流行使用最广泛的一种学习算法。 在分类问题中,我们尝试预测的是结果是否属于某一个类(例如正确或错误)。分类问题的例子有:判断一封 ...
0x00 概要 逻辑回归(logistic regression)在机器学习中是非常经典的分类方法,周志华教授的《机器学习》书中称其为对数几率回归,因为其属于对数线性模型。 在算法面试中,逻辑回归也经常被问到,常见的面试题包括: 逻辑回归推导; 逻辑回归如何实现多分类? SVM ...
本笔记主要记录学习《机器学习》的总结体会。如有理解不到位的地方,欢迎大家指出,我会努力改正。 在学习《机器学习》时,我主要是通过Andrew Ng教授在mooc上提供的《Machine Learning》课程,不得不说Andrew Ng老师在讲授这门课程时,真的很用心,特别是编程 ...
许多问题需要将概率估算值作为输出。逻辑回归是一种极其高效的概率计算机制。实际上,您可以通过下两种方式之一使用返回的概率: “按原样” 转换成二元类别 我们来了解一下如何“按原样”使用概率。假设我们创建一个逻辑回归模型来预测狗在半夜发出叫声的概率。我们将此概率称为 ...
回顾: 梯度下降 梯度下降和梯度上升区别 一:加载数据和实现sigmoid函数(同梯度下降) 二:实现批量梯度上升(重点) (一)代码实现 (二)结果预测 三:绘制图像决策边界 四:随机梯度下降法 (一)简陋版随机 ...
机器学习最通俗的解释就是让机器学会决策。对于我们人来说,比如去菜市场里挑选芒果,从一堆芒果中拿出一个,根据果皮颜色、大小、软硬等属性或叫做特征,我们就会知道它甜还是不甜。类似的,机器学习就是把这些属性信息量化后输入计算机模型,从而让机器自动判断一个芒果是甜是酸,这实际上就是一个分类问题。 分类 ...
四、逻辑回归 6、逻辑回归实现二分类 (1)对于每个样本x利用线性回归模型得到输出z: (2)将线性回归模型的输出z利用sigmoid函数得到概率: (3)构造损失函数: (4)损失函数关于向量W=( w0 ...