深度残差收缩网络其实是一种通用的特征学习方法,是深度残差网络ResNet、注意力机制和软阈值化的集成,可以用于图像分类。本文采用TensorFlow 1.0和TFLearn 0.3.2,编写了图像分类的程序,采用的图像数据为CIFAR-10。CIFAR-10是一个非常常用的图像数据集,包含10 ...
深度残差网络ResNet获得了 年IEEE Conference on Computer Vision and Pattern Recognition的最佳论文奖,目前在谷歌学术的引用量已高达 次。 深度残差收缩网络是深度残差网络的一种的改进版本,其实是深度残差网络 注意力机制和软阈值函数的集成。 在一定程度上,深度残差收缩网络的工作原理,可以理解为:通过注意力机制注意到不重要的特征,通过软阈值函 ...
2020-01-29 10:18 0 11764 推荐指数:
深度残差收缩网络其实是一种通用的特征学习方法,是深度残差网络ResNet、注意力机制和软阈值化的集成,可以用于图像分类。本文采用TensorFlow 1.0和TFLearn 0.3.2,编写了图像分类的程序,采用的图像数据为CIFAR-10。CIFAR-10是一个非常常用的图像数据集,包含10 ...
1. 深度残差收缩网络的初衷 大家有没有发现这样一种现象:在很多数据集中,每个样本内部,都或多或少地包含着一些与标签无关的信息;这些信息的话,其实就是冗余的。 然后,即使在同一个样本集中,各个样本的噪声含量也往往是不同的。 那么,降噪算法中常用的软阈值函数,能不能嵌入到深度残差网络中 ...
其实,这篇文章的摘要很好地总结了整体的思路。一共四句话,非常简明扼要。 我们首先来翻译一下论文的摘要: 第一句:This paper develops new deep lea ...
深度残差收缩网络(Deep Residual Shrinkage Network)是深度残差学习(Deep Residual Network, ResNet)的一种改进,发表在IEEE Transactions on Industrial Informatics上,面向的是数据包含噪声 ...
从本质上讲,深度残差收缩网络属于卷积神经网络,是深度残差网络(deep residual network, ResNet)的一个变种。它的核心思想在于,在深度学习进行特征学习的过程中,剔除冗余信息是非常重要的;软阈值化是一种非常灵活的、删除冗余信息的方式。 1.深度残差网络 首先,在介绍深度残 ...
(1)回顾一下深度残差网络的结构 在下图中,(a)-(c)分别是三种残差模块,(d)是深度残差网络的整体示意图。BN指的是批标准化(Batch Normalization),ReLU指的是整流线性单元激活函数(Rectifier Linear Unit),Conv指的是卷积层 ...
本文解读了一种新的深度注意力算法,即深度残差收缩网络(Deep Residual Shrinkage Network)。从功能上讲,深度残差收缩网络是一种面向强噪声或者高度冗余数据的特征学习方法。本文首先回顾了相关基础知识,然后介绍了深度残差收缩网络的动机和具体实现,希望对大家有所帮助。 1. ...
翻译仅为学习,欢迎转载。 【题目】Deep Residual Shrinkage Networks for Fault Diagnosis【翻译】基于深度残差收缩网络的故障诊断 Abstract (摘要) 【翻译】本文提出了一种新的深度学习方法,即深度残差收缩网络,以增强深度 ...