参考:https://mp.weixin.qq.com/s/6vkz18Xw4USZ3fldd_wf5g 1、数据集下载地址 https://tianchi-competition.oss- ...
一概念: 文本分类:将一个文档归类到一个或多个类别中的自然语言处理任务 类别即标签 多标签分类:一篇文档可能属于多个类别 二流程: a.人工标注文档的类别生成文本分类语料库 代码: b.利用语料训练模型 特征提取以及分类器处理 特征提取步骤: 分词 分词等预处理结束后,从这些词语中挑出有用的子集作为特征,利用卡方特征选择筛选词语 确定特征之后,将文档转化为词袋向量 分类器包括:朴素贝叶斯以及支持向 ...
2020-01-26 21:04 0 1101 推荐指数:
参考:https://mp.weixin.qq.com/s/6vkz18Xw4USZ3fldd_wf5g 1、数据集下载地址 https://tianchi-competition.oss- ...
接着上一篇。在正式的尝试使用文本分类算法分类文本的时候,我们得先准备两件事情: 一,准备适量的训练文本;二,选择合适的方法将这些训练文本进行表示(也就是将文本换一种方式表示) 大家都知道文本其实就是很多词组成的文章啊。所以很自然的就想到用一系列词来表示文本。比如我这篇文章,将其分词之后 ...
目录 1、transformer 2、GPT 3、bert 4、RoBERTa 5、ALBERT 6、spanBert 7、xlnet 1、t ...
实战:https://github.com/jiangxinyang227/NLP-Project 一、简介: 1、传统的文本分类方法:【人工特征工程+浅层分类模型】 (1)文本预处理: ①(中文) 文本分词 正向/逆向/双向最大匹配 ...
直接从特征提取,跳到了BoostSVM,是因为自己一直在写程序,分析垃圾文本,和思考文本分类用于识别垃圾文本的短处。自己学习文本分类就是为了识别垃圾文本。 中间的博客待自己研究透彻后再补上吧。 因为获取垃圾文本的时候,发现垃圾文本不是简单的垃圾文本,它们具有多个特性: 1. 种类繁多 ...
近期阅读了一些深度学习在文本分类中的应用相关论文(论文笔记),同时也参加了CCF 大数据与计算智能大赛(BDCI)2017的一个文本分类问题的比赛:让AI当法官,并取得了最终评测第四名的成绩(比赛的具体思路和代码参见github项目repo)。因此,本文总结了文本分类相关的深度学习模型、优化 ...
ERNIE 相关链接:ERNIE官方使用介绍,ERNIE项目地址 基于transformer的encoder,主要思想是将文本中已有的知识融入到模型训练中,因此采用实体mask的方式(实体指人名,地名等词) 预训练 模型结构图如下所示 文本中已有的知识主要有人名,地名等实体,这些词本来 ...
文本分类实战 分类任务 算法流程 数据标注 特征抽取 特征选择 分类器 训练 ...