原文:机器学习- Sklearn (交叉验证和Pipeline)

前面一节咱们已经介绍了决策树的原理已经在sklearn中的应用。那么这里还有两个数据处理和sklearn应用中的小知识点咱们还没有讲,但是在实践中却会经常要用到的,那就是交叉验证cross validation和Pipeline。cross validation是保证了咱们的模型不受数据分布的影响,因为有些数据可能因为数据的分布很不平均,导致咱们训练的模型虽然在咱们的数据集里面的表现很好,但是在实 ...

2020-01-26 20:31 0 2769 推荐指数:

查看详情

机器学习笔记:sklearn交叉验证之KFold与StratifiedKFold

一、交叉验证 机器学习中常用交叉验证函数:KFold 和 StratifiedKFold。 方法导入: StratifiedKFold:采用分层划分的方法(分层随机抽样思想),验证集中不同类别占比与原始样本的比例一致,划分时需传入标签特征 KFold:默认随机划分训练集、验证集 ...

Tue Mar 01 08:08:00 CST 2022 0 1415
机器学习sklearn(二十二): 模型评估(二)交叉验证:评估估算器的表现(二)计算交叉验证的指标

计算交叉验证的指标 使用交叉验证最简单的方法是在估计器和数据集上调用 cross_val_score 辅助函数。 下面的示例展示了如何通过分割数据,拟合模型和计算连续 5 次的分数(每次不同分割)来估计 linear kernel 支持向量机在 iris 数据集上的精度: 评分 ...

Sun Jun 20 05:41:00 CST 2021 0 207
机器学习中的过拟合和欠拟合及交叉验证

机器学习中的过拟合和欠拟合 1、机器学习算法对于整体的数据训练和拟合,以典型的多元线性回归的方式为例,通过设定拟合的最高次数,然后对比输出的曲线结果可以看出,随着拟合函数次数的增大,其拟合线性回归模型的R2的值在不断地增大,均方差也在不断地减小,看起来拟合的结果越来越准确,其实质只是对于所存 ...

Tue Aug 13 07:55:00 CST 2019 0 778
机器学习】Cross-Validation(交叉验证)详解

本文章部分内容基于之前的一篇专栏文章:统计学习引论 在机器学习里,通常来说我们不能将全部用于数据训练模型,否则我们将没有数据集对该模型进行验证,从而评估我们的模型的预测效果。为了解决这一问题,有如下常用的方法: 1.The Validation Set Approach 第一种是最简单 ...

Mon Mar 25 23:10:00 CST 2019 0 1014
机器学习中的train valid test以及交叉验证

参考博客:http://blog.csdn.net/u010167269/article/details/51340070 在以前的网络训练中,有关于验证集一直比较疑惑,在一些机器学习的教程中,都会提到,将数据集分为三部分,即训练集,验证集与测试集,但是由于工作中涉及到的都是神经网络的训练 ...

Tue Feb 07 19:31:00 CST 2017 0 4495
机器学习——交叉验证,GridSearchCV,岭回归

0.交叉验证   交叉验证的基本思想是把在某种意义下将原始数据(dataset)进行分组,一部分做为训练集(train set),另一部分做为验证集(validation set or test set),首先用训练集对分类器进行训练,再利用验证集来测试训练得到的模型(model),以此来做为 ...

Tue Apr 02 06:58:00 CST 2019 0 2009
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM