本文用于基本入门理解。 强化学习的基本理论 : R, S, A 这些就不说了。 先设想两个场景: 一。 1个 5x5 的 格子图, 里面有一个目标点, 2个死亡点二。 一个迷宫, 一个出发点, 3处 分叉点, 5个死角, 1条活路Q-learning 的概念 其实就是一个算法 ...
本系列强化学习内容来源自对David Silver课程的学习 课程链接http: www .cs.ucl.ac.uk staff D.Silver web Teaching.html 在上一文介绍了RL基础概念和MDP后,本文介绍了在model free情况下 即不知道回报Rs和状态转移矩阵Pss ,如何进行prediction,即预测当前policy的state value function v ...
2020-01-26 12:56 0 938 推荐指数:
本文用于基本入门理解。 强化学习的基本理论 : R, S, A 这些就不说了。 先设想两个场景: 一。 1个 5x5 的 格子图, 里面有一个目标点, 2个死亡点二。 一个迷宫, 一个出发点, 3处 分叉点, 5个死角, 1条活路Q-learning 的概念 其实就是一个算法 ...
上篇文章 强化学习——时序差分 (TD) --- SARSA and Q-Learning 我们介绍了时序差分TD算法解决强化学习的评估和控制问题,TD对比MC有很多优势,比如TD有更低方差,可以学习不完整的序列。所以我们可以在策略控制循环中使用TD来代替MC。优于TD算法的诸多优点,因此现在主流 ...
强化学习基础: 注: 在强化学习中 奖励函数和状态转移函数都是未知的,之所以有已知模型的强化学习解法是指使用采样估计的方式估计出奖励函数和状态转移函数,然后将强化学习问题转换为可以使用动态规划求解的已知模型问题。 强化学习问题由于采用了MDP ...
假设有这样的房间 如果将房间表示成点,然后用房间之间的连通关系表示成线,如下图所示: ...
1. 前言 Q-Learning算法也是时序差分算法的一种,和我们前面介绍的SARAS不同的是,SARSA算法遵从了交互序列,根据当前的真实行动进行价值估计;Q-Learning算法没有遵循交互序列,而是在当前时刻选择了使价值最大的行动。 2. Q-Learning Q-Learning算法 ...
许久没有更新重新拾起,献于小白 这次介绍的是强化学习 Q-learning,Q-learning也是离线学习的一种 关于Q-learning的算法详情看 传送门 下文中我们会用openai gym来做演示 简要 q-learning的伪代码先看这部分,很重要 简单 ...
https://blog.csdn.net/Young_Gy/article/details/73485518 强化学习在alphago中大放异彩,本文将简要介绍强化学习的一种q-learning。先从最简单的q-table下手,然后针对state过多的问题引入q-network,最后通过两个 ...