前言:之前几篇讲了cfg文件的理解、数据集的构建、数据加载机制和超参数进化机制,本文将讲解YOLOv3如何从cfg文件构造模型。本文涉及到一个比较有用的部分就是bias的设置,可以提升mAP、F1、P、R等指标,还能让训练过程更加平滑。 1. cfg文件 在YOLOv3中,修改 ...
前言:上次讲了YOLOv 中的模型构建,从头到尾理了一遍从cfg读取到模型整个构建的过程。其中模型构建中最重要的YOLOLayer还没有梳理,本文将从代码的角度理解YOLOLayer的构建与实现。 . Grid创建 YOLOv 是一个单阶段的目标检测器,将目标划分为不同的grid,每个grid分配 个anchor作为先验框来进行匹配。首先读一下代码中关于grid创建的部分。 首先了解一下pyto ...
2020-01-22 17:15 5 1703 推荐指数:
前言:之前几篇讲了cfg文件的理解、数据集的构建、数据加载机制和超参数进化机制,本文将讲解YOLOv3如何从cfg文件构造模型。本文涉及到一个比较有用的部分就是bias的设置,可以提升mAP、F1、P、R等指标,还能让训练过程更加平滑。 1. cfg文件 在YOLOv3中,修改 ...
前言:【从零开始学习YOLOv3】系列越写越多,本来安排的内容比较少,但是在阅读代码的过程中慢慢发掘了一些新的亮点,所以不断加入到这个系列中。之前都在读YOLOv3中的代码,已经学习了cfg文件、模型构建等内容。本文在之前的基础上,对模型的代码进行修改,将之前Attention系列中的SE ...
前言:YOLOv3代码中也提供了参数搜索,可以为对应的数据集进化一套合适的超参数。本文建档分析一下有关这部分的操作方法以及其参数的具体进化方法。 1. 超参数 YOLOv3中的 超参数在train.py中提供,其中包含了一些数据增强参数设置,具体内容如下: 2. 使用方法 ...
前言:本文主要讲YOLOv3中数据加载部分,主要解析的代码在utils/datasets.py文件中。通过对数据组织、加载、处理部分代码进行解读,能帮助我们更快地理解YOLOv3所要求的数据输出要求,也将有利于对之后训练部分代码进行理解。 1. 标注格式 在上一篇【从零开始学习 ...
前言: 与其他框架不同,Darknet构建网络架构不是通过代码直接堆叠,而是通过解析cfg文件进行生成的。cfg文件格式是有一定规则,虽然比较简单,但是有些地方需要对yolov3有一定程度的熟悉,才能正确设置。 下边以yolov3.cfg为例进行讲解。 作者:pprp 首发 ...
YOLOv1是一个anchor-free的,从YOLOv2开始引入了Anchor,在VOC2007数据集上将mAP提升了10个百分点。YOLOv3也继续使用了Anchor,本文主要讲ultralytics版YOLOv3的Loss部分的计算, 实际上这部分loss和原版差距非常大,并且可以通过arc ...
前言: 工作原因,要用到yolo算法,组长给推荐了一篇博文比较详细的讲解了yolov3和yolov4,讲的非常好,参考链接如下: https://mp.weixin.qq.com/s/qszdrGgBIjA5nnr12VIyYQ 1.论文汇总 Yolov3论文名:《Yolov3 ...
说明: 本例程使用YOLOv3进行昆虫检测。例程分为数据处理、模型设计、损失函数、训练模型、模型预测和测试模型六个部分。本篇为第二部分,使用Paddle动态图实现了YOLOv3,使用Darknet53骨干网络和YOLOv3的检测头部。 实验代码: Darknet53骨干网 ...