1 引言 特征提取和特征选择作为机器学习的重点内容,可以将原始数据转换为更能代表预测模型的潜在问题和特征的过程,可以通过挑选最相关的特征,提取特征和创造特征来实现。要想学习特征选择必然要了解什么是特征提取和特征创造,得到数据的特征之后对特征进行精炼,这时候就要用到特征选择。本文主要介绍 ...
概述:上节咱们说了特征工程是机器学习的一个核心内容。然后咱们已经学习了特征工程中的基础内容,分别是missing value handling和categorical data encoding的一些方法技巧。但是光会前面的一些内容,还不足以应付实际的工作中的很多情况,例如如果咱们的原始数据的features太多,咱们应该选择那些features作为咱们训练的features 或者咱们的feat ...
2020-01-19 12:09 1 1302 推荐指数:
1 引言 特征提取和特征选择作为机器学习的重点内容,可以将原始数据转换为更能代表预测模型的潜在问题和特征的过程,可以通过挑选最相关的特征,提取特征和创造特征来实现。要想学习特征选择必然要了解什么是特征提取和特征创造,得到数据的特征之后对特征进行精炼,这时候就要用到特征选择。本文主要介绍 ...
python3学习使用api 使用到联网的数据集,我已经下载到本地,可以到我的git中下载数据集 git: https://github.com/linyi0604/MachineLearning 代码: 生成的准确率图: ...
注: 这个报告是我在10年7月的时候写的(博士一年级),最近整理电脑的时候翻到,当时初学一些KDD上的paper的时候总结的,现在拿出来分享一下。 毕竟是初学的时候写的,有些东西的看法也在变化,看的 ...
原文:http://www.cnblogs.com/xbinworld/archive/2012/11/27/2791504.html 机器学习-特征选择 Feature Selection 研究报告 注: 这个报告是我在10年7月的时候写的(博士一年级),最近整理电脑的时候翻到 ...
特征选择 主要思想:包裹式(封装器法)从初始特征集合中不断的选择特征子集,训练学习器,根据学习器的性能来对子集进行评价,直到选择出最佳的子集。包裹式特征选择直接针对给定学习器进行优化 案例一、封装器法 常用实现方法:循序特征选择。 循序 ...
原文链接:https://developers.google.com/machine-learning/crash-course/feature-crosses/ 特征组合是指两个或多个特征相乘形成的合成特征。特征的相乘组合可以提供超出这些特征单独能够提供的预测能力。 1- 对非线性规律进行 ...
不多说,直接上干货! ...
如何找出模型需要的特征?首先要找到该领域的业务专家,让他们给一些建议。比如我们需要解决一个药品疗效的分类问题,那么先找到领域专家,向他们咨询哪些因素(特征)会对该药品的疗效产生影响,较大影响和较小影响的因素都要。这些因素就是我们特征的第一候选集。(摘自:https ...