分布式强化学习基础概念(Distributional RL) from: https://mtomassoli.github.io/2017/12/08/distributional_rl/ 1. Q-learning 在 Q-learning 中,我们想要优化如下的 loss ...
本系列强化学习内容来源自对David Silver课程的学习 课程链接http: www .cs.ucl.ac.uk staff D.Silver web Teaching.html 之前接触过RL Reinforcement Learning 并且在组会学习轮讲里讲过一次Policy Gradient,但是由于基础概念不清,虽然当时懂了 但随后很快就忘。。虽然现在写这个系列有些晚 没有好好跟上知 ...
2020-01-25 06:13 0 1942 推荐指数:
分布式强化学习基础概念(Distributional RL) from: https://mtomassoli.github.io/2017/12/08/distributional_rl/ 1. Q-learning 在 Q-learning 中,我们想要优化如下的 loss ...
【入门,来自wiki】 强化学习是机器学习中的一个领域,强调如何基于环境而行动,以取得最大化的预期利益。其灵感来源于心理学中的行为主义理论,即有机体如何在环境给予的奖励或惩罚的刺激下,逐步形成对刺激的预期,产生能获得最大利益的习惯性行为。这个方法具有普适性,因此在其他许多领域都有研究,例如博弈论 ...
https://www.zhihu.com/question/65064314/answer/1868894159 我是半路出家自学的机器学习和强化学习,以下仅分享我能接触到的强化学习/RL的知识(可能学院派的看到的会不一样) 基础部分: 《Reinforcement Learning ...
1、策略与环境模型 强化学习是继监督学习和无监督学习之后的第三种机器学习方法。强化学习的整个过程如下图所示: 具体的过程可以分解为三个步骤: 1)根据当前的状态 $s_t$ 选择要执行的动作 $ a_t $。 2)根据当前的状态 $s_t $ 和动作 $ a_t ...
本人硕士期间就对RL比较感兴趣,当时AlpahGo还没火,可能更多是对于Strong AI的前景和未来有着较大期待吧,后来随着AlphaGo--Master---zero版本的不断更新,再加上OpenAI的星际争霸等,RL逐步焕发出了新的生机。因此,自从2016年下半年开始断断续续地学习强化学习 ...
作者:YJLAugus 博客: https://www.cnblogs.com/yjlaugus 项目地址:https://github.com/YJLAugus/Reinforcement-Learning-Notes,如果感觉对您有所帮助,烦请点个⭐Star。 MDP背景介绍 ...
概述 强化学习(Reinforcement Learning,简称RL)是机器学习的一个重要分支。在强化学习中,包含两种基本的元素:状态与动作,在某个状态下执行某种动作,这便是一种策略,学习器要做的就是通过不断地探索学习,从而获得一个好的策略。例如:在围棋中,一种落棋的局面就是一种状态,若能知道 ...