1)最小二乘法——求方差的平方和为极小值时的参数。 要尽全力让这条直线最接近这些点,那么问题来了,怎么才叫做最接近呢?直觉告诉我们,这条直线在所有数据点中间穿过,让这些点到这条直线的误差之和越小越好。这里我们用方差来算更客观。也就是说,把每个点到直线的误差平方加起来;接下来的问题 ...
最小二乘法的回归方程求解 最近短暂告别大数据,开始进入到了算法学习的领域,这时才真的意识到学海无涯啊,数学领域充满了无限的魅力和乐趣,可以说更甚于计算机带给本人的乐趣,由于最近正好看到线性代数,因此,今天我们就来好好整理一下机器学习领域中的一个非常重要的算法 最小二乘法,那么,废话不多说,我们直接开始吧 . 最小二乘法介绍 . 举例 现实生活中,我们经常会观察到这样一类现象,比如说某个男的,情商很 ...
2020-01-17 16:15 0 3406 推荐指数:
1)最小二乘法——求方差的平方和为极小值时的参数。 要尽全力让这条直线最接近这些点,那么问题来了,怎么才叫做最接近呢?直觉告诉我们,这条直线在所有数据点中间穿过,让这些点到这条直线的误差之和越小越好。这里我们用方差来算更客观。也就是说,把每个点到直线的误差平方加起来;接下来的问题 ...
在统计学中,线性回归(Linear Regression)是利用称为线性回归方程的最小平方函数对一个或多个 自变量和 因变量之间关系进行建模的一种 回归分析。这种函数是一个或多个称为回归系数的模型参数的线性组合。只有一个自变量的情况称为简单回归,大于一个自变量情况的叫做多元回归。(这反过 ...
在统计学中,线性回归(Linear Regression)是利用称为线性回归方程的最小平方函数对一个或多个 自变量和 因变量之间关系进行建模的一种 回归分析。这种函数是一个或多个称为回归系数的模型参数的线性组合。只有一个自变量的情况称为简单回归,大于一个自变量情况的叫做 ...
。虽然这些数据是离散的,不是连续的,我们无法得到一个确定的描述这种相关性的函数方程,但既然在直角坐标系中数据 ...
最近看了一本线性代数,如下图这个样的。。。比较讨厌的是这本书的排版贼难受,定义和定理加粗基本和没加一样,排版也过于紧密,看起来一度想弃书。 重点不在这里,哈哈哈哈。 这几天看完线代后,有一个粗略的理解后,菜虽然菜,但我还是想要倒腾倒腾。想起之前学过的最小二乘法,不过是一个 ...
单变量线性回归 在这个文档中将会介绍单变量线性回归模型的建立和公式推倒,通过实例的代码实现算法来加深理解 一.模型推导 1-1 线性回归模型 设定样本描述为 \[x=(x_1;x_2;...;x_d) \] 预测函数为 \[f(\boldsymbol x ...
前情提要:关于logistic regression,其实本来这章我是不想说的,但是刚看到岭回归了,我感觉还是有必要来说一下。 一:最小二乘法 最小二乘法的基本思想:基于均方误差最小化来进行模型求解的方法。在线性回归中,最小二乘法就是试图找到一条直线,使所有样本到直线上的欧氏距离之和最小 ...
转载来自:http://blog.csdn.net/acdreamers/article/details/44662633 关于最小二乘问题的求解,之前已有梯度下降法,还有比较快速的牛顿迭代。今天来介绍一种方法,是基于矩阵求导来计算的,它的计算方式更加简洁高效,不需要大量迭代,只需解一个正规 ...