一、无偏估计 所谓总体参数估计量的无偏性指的是,基于不同的样本,使用该估计量可算出多个估计值,但它们的平均值等于被估参数的真值。 在某些场合下,无偏性的要求是有实际意义的。例如,假设在某厂商与某销售商之间存在长期的供货关系,则在对产品出厂质量检验方法的选择上,采用随机抽样的方法来估计 ...
为什么样本方差的分母是n 最简单的原因,是因为因为均值已经用了n个数的平均来做估计在求方差时,只有 n 个数和均值信息是不相关的。而你的第 个数已经可以由前 n 个数和均值 来唯一确定,实际上没有信息量。所以在计算方差时,只除以 n 。 那么更严格的证明呢 请耐心的看下去。 样本方差计算公式里分母为的目的是为了让方差的估计是无偏的。 无偏的估计 unbiased estimator 比有偏估计 ...
2020-01-09 22:40 0 3555 推荐指数:
一、无偏估计 所谓总体参数估计量的无偏性指的是,基于不同的样本,使用该估计量可算出多个估计值,但它们的平均值等于被估参数的真值。 在某些场合下,无偏性的要求是有实际意义的。例如,假设在某厂商与某销售商之间存在长期的供货关系,则在对产品出厂质量检验方法的选择上,采用随机抽样的方法来估计 ...
为什么样本方差的分母是n-1?最简单的原因,是因为因为均值已经用了n个数的平均来做估计在求方差时,只有(n-1)个数和均值信息是不相关的。而你的第n个数已经可以由前(n-1)个数和均值 来唯一确定,实际上没有信息量。所以在计算方差时,只除以(n-1)。 总体方差(variance):总体中变量 ...
原文链接:https://blog.csdn.net/qq_16587307/article/details/81328773 最近学习又接触到了样本方差估计,我重新想到了这个问题,很幸运这篇文章写的很好,解决了之前似懂非懂的困扰 证明过程(不是推导 ...
\bar X)^2\over n-1}\). 无偏估计 上中学时第一次学习样本方差时便对分母n-1 ...
为什么样本方差(sample variance)的分母是 n-1? (補充一句哦,題主問的方差 estimator 通常用 moments 方法估計。如果用的是 ML 方法,請不要多想不是你們想的那樣, 方差的 estimator 的期望一樣是有 bias 的,有興趣的同學可以自己用正態分佈 ...
1.为什么样本方差的分母是n-1 首先给出样本方差的计算方法: \[S^2=\frac{1}{n-1}\sum_{i=1}^{n}{(X_i-\bar{X})}^2\] 其中样本均值 \[\bar{X}=\frac{1}{n}\sum_{i=1}^{n}X_i\] 总体方差(在总体均值 ...
一、概念、条件及目的 1.概念 要理解样本方差的自由度为什么是n-1,得先理解自由度的概念: 自由度,是指附加给独立的观测值的约束或限制的个数,即一组数据中可以自由取值的个数。 2.成立条件 所谓自由取值,是指 ...
因为样本用的平均值不是总体的平均值,一定会导致低估,所以我们放大一点,用n-1 ...