detection)问题。 对于一般的机器学习方法,最常见的评价指标无疑是分类准确度ACC (accura ...
样本不平衡往往会导致以下问题: 对比例小的样本造成过拟合,也就是说预测偏向样本数较多的分类。这样就会大大降低模型的范化能力。往往accuracy 准确率 很高,但auc很低。 针对样本的不平衡问题,有以下几种常见的解决思路: 搜集更多的数据 改变评判指标 对数据进行采样 合成样本 改变样本权重 搜集更多的数据 搜集更多的数据,从而让正负样本的比例平衡,这种方法往往是最被忽视的方法,然而实际上,当搜 ...
2020-01-06 14:37 0 794 推荐指数:
detection)问题。 对于一般的机器学习方法,最常见的评价指标无疑是分类准确度ACC (accura ...
一、业务背景 日常工作、比赛的分类问题中常遇到类别型的因变量存在严重的偏倚,即类别之间的比例严重失调。 样本量差距过大会导致建模效果偏差。 例如逻辑回归不适合处理类别不平衡问题,会倾向于将样本判定为大多数类别,虽然能达到很高的准确率,但是很低的召回率。 出现样本不均衡场景主要有 ...
转自:watersink 1, Bootstrapping,hard negative mining最原始的一种方法,主要使用在传统的机器学习方法中。比如,训练cascade类型分类模型的时候,可以将每一级分类错误的样本继续添加进下一层进行训练。 比如,SVM分类中去掉那些离分界线较远的样本 ...
0 前言 Focal Loss是为了处理样本不平衡问题而提出的,经时间验证,在多种任务上,效果还是不错的。在理解Focal Loss前,需要先深刻理一下交叉熵损失,和带权重的交叉熵损失。然后我们从样本权重的角度出发,理解Focal Loss是如何分配样本权重的。Focal是动词Focus的形容词 ...
这几年来,机器学习和数据挖掘非常火热,它们逐渐为世界带来实际价值。与此同时,越来越多的机器学习算法从学术界走向工业界,而在这个过程中会有很多困难。数据不平衡问题虽然不是最难的,但绝对是最重要的问题之一。 一、数据不平衡 在学术研究与教学中,很多算法都有一个基本假设,那就是数据分布 ...
机器学习之类别不平衡问题 (1) —— 各种评估指标 机器学习之类别不平衡问题 (2) —— ROC和PR曲线 机器学习之类别不平衡问题 (3) —— 采样方法 完整代码 在二分类问题中,通常假设正负类别相对均衡,然而实际应用中类别不平衡的问题,如100, 1000, 10000倍 ...
机器学习之类别不平衡问题 (1) —— 各种评估指标 机器学习之类别不平衡问题 (2) —— ROC和PR曲线 机器学习之类别不平衡问题 (3) —— 采样方法 完整代码 前两篇主要谈类别不平衡问题的评估方法,重心放在各类评估指标以及ROC和PR曲线上,只有在明确了这些后 ...
推荐一篇英文的博客: 8 Tactics to Combat Imbalanced Classes in Your Machine Learning Dataset 1.不平衡数据集带来的影响 一个不平衡的两类数据集,使用准确率(accuracy)作为模型评价指标,最后 ...