一、归一化简介 在对数据进行预处理时,经常要用到归一化方法。 在深度学习中,将数据归一化到一个特定的范围能够在反向传播中获得更好的收敛。如果不进行数据标准化,有些特征(值很大)将会对损失函数影响更大,使得其他值比较小的特征的重要性降低。因此 数据标准化可以使得每个特征的重要性更加均衡。 公式 ...
一、归一化简介 在对数据进行预处理时,经常要用到归一化方法。 在深度学习中,将数据归一化到一个特定的范围能够在反向传播中获得更好的收敛。如果不进行数据标准化,有些特征(值很大)将会对损失函数影响更大,使得其他值比较小的特征的重要性降低。因此 数据标准化可以使得每个特征的重要性更加均衡。 公式 ...
代码如下: 后台cmd下,输入:tensorboard --logdir "C:\Users\Z He\PycharmProjects\he-learn\logs"; 复制链接,在edge中打开,如下: loss率 准确率: 图像: 可视化确实有助于认识 ...
本门课程的基础章节,详细介绍了如何使用tf.keras进行模型的搭建以及大量的深度学习的理论知识。理论知识包括分类问题、回归问题、损失函数、神经网络、激活函数、dropout、批归一化、深度神经网络、Wide&Deep模型、密集特征、稀疏特征、超参数搜索等及其在图像分类、房价预测上的实现 ...
Keras 是一个用于构建和训练深度学习模型的高阶 API。它可用于快速设计原型、高级研究和生产。 keras的3个优点: 方便用户使用、模块化和可组合、易于扩展 1.导入tf.keras tensorflow2推荐使用keras构建网络,常见的神经网络都包含在keras.layer中(最新 ...
本章总览 模型验证:model.evaluate()这个函数封装的比较low,建议大家自己写,虽然我现在先不会,但是思路是这样的。模型预测:model.predict()虽然也是封装好的,但是我们一样可以自己写。 回调函数回调函数就是keras在模型 ...
最近对tensorflow十分感兴趣,所以想做一个系列来详细讲解tensorflow来。 本教程主要由tensorflow2.0官方教程的个人学习复现笔记整理而来,并借鉴了一些keras构造神经网络的方法,中文讲解,方便喜欢阅读中文教程的朋友,tensorflow官方教程:https ...
Sequential model 方法一、 返回原模型(不包含最后一层)的拷贝 new_model = tf.keras.models.Sequential(base_model.layers[:-1]) 方法二、 原地删除原模型的最后一层 base_model._layers.pop ...