原文:Keras快速搭建深度残差收缩网络(及深度残差网络)

从本质上讲,深度残差收缩网络属于卷积神经网络,是深度残差网络 deep residual network, ResNet 的一个变种。它的核心思想在于,在深度学习进行特征学习的过程中,剔除冗余信息是非常重要的 软阈值化是一种非常灵活的 删除冗余信息的方式。 .深度残差网络 首先,在介绍深度残差收缩网络的时候,经常需要从深度残差网络开始讲起。下图展示了深度残差网络的基本模块,包括一些非线性层 残差路 ...

2019-12-31 23:46 2 2644 推荐指数:

查看详情

深度收缩网络:(六)代码实现

  深度收缩网络其实是一种通用的特征学习方法,是深度网络ResNet、注意力机制和软阈值化的集成,可以用于图像分类。本文采用TensorFlow 1.0和TFLearn 0.3.2,编写了图像分类的程序,采用的图像数据为CIFAR-10。CIFAR-10是一个非常常用的图像数据集,包含10 ...

Wed Dec 25 02:51:00 CST 2019 0 1890
深度收缩网络总结

1. 深度收缩网络的初衷 大家有没有发现这样一种现象:在很多数据集中,每个样本内部,都或多或少地包含着一些与标签无关的信息;这些信息的话,其实就是冗余的。 然后,即使在同一个样本集中,各个样本的噪声含量也往往是不同的。 那么,降噪算法中常用的软阈值函数,能不能嵌入到深度网络中 ...

Mon Feb 03 21:42:00 CST 2020 0 1035
深度收缩网络:(二)整体思路

  其实,这篇文章的摘要很好地总结了整体的思路。一共四句话,非常简明扼要。   我们首先来翻译一下论文的摘要:      第一句:This paper develops new deep lea ...

Sat Sep 28 19:03:00 CST 2019 0 498
深度收缩网络:(一)背景知识

  深度收缩网络(Deep Residual Shrinkage Network)是深度学习(Deep Residual Network, ResNet)的一种改进,发表在IEEE Transactions on Industrial Informatics上,面向的是数据包含噪声 ...

Sat Sep 28 04:25:00 CST 2019 0 1048
深度网络(ResNet)

引言   对于传统的深度学习网络应用来说,网络越深,所能学到的东西越多。当然收敛速度也就越慢,训练时间越长,然而深度到了一定程度之后就会发现越往深学习率越低的情况,甚至在一些场景下,网络层数越深反而降低了准确率,而且很容易出现梯度消失和梯度爆炸。   这种现象并不是由于过拟合导致的,过拟合 ...

Sat Jul 06 23:37:00 CST 2019 0 2162
深度网络的理解

一说起“深度学习”,自然就联想到它非常显著的特点“深、深、深”(重要的事说三遍 ),通过很深层次的网络实现准确率非常高的图像识别、语音识别等能力。因此,我们自然很容易就想到:深的网络一般会比浅的网络效果好,如果要进一步地提升模型的准确率,最直接的方法就是把网络设计得越深越好,这样模型的准确率也就 ...

Fri Jul 13 23:56:00 CST 2018 0 5122
Resnet——深度网络(一)

我们都知道随着神经网络深度的加深,训练过程中会很容易产生误差的积累,从而出现梯度爆炸和梯度消散的问题,这是由于随着网络层数的增多,在网络中反向传播的梯度会随着连乘变得不稳定(特别大或特别小),出现最多的还是梯度消散问题。网络解决的就是随着深度增加网络性能越来越的问题 ...

Wed Feb 12 06:43:00 CST 2020 1 839
Resnet——深度网络(二)

基于上一篇resnet网络结构进行实战。 再来贴一下resnet的基本结构方便与代码进行对比 resnet的自定义类如下: 训练过程如下: 打印网络结构和参数量如下: ...

Thu Feb 13 07:03:00 CST 2020 0 845
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM