代码流程 Part1 Demo实践 Step1:库函数导入 Step2:模型训练 Step3:模型参数查看 Step4:数据和模型可视化 Step5:模型预测 Part2 基于鸢尾花(iris)数据集的逻辑回归分类实践 ...
代码流程 Part1 Demo实践 Step1:库函数导入 Step2:模型训练 Step3:模型参数查看 Step4:数据和模型可视化 Step5:模型预测 Part2 基于鸢尾花(iris)数据集的逻辑回归分类实践 ...
1.逻辑回归 1.1简单逻辑回归模型实例——二分类 1.1.1问题描述 利用Python中sklearn包进行逻辑回归分析。根据已有数据探究“学习时长”与“是否通过考试”之间关系,并建立预测模型。 1.2代码及其解释 1.2.1生成/导入数据 1.2.2查看数据 1.2.3 ...
一、回归预测简介 现在我们知道的回归一词最早是由达尔文的表兄弟Francis Galton发明的。Galton在根据上一年的豌豆种子的尺寸预测下一代豌豆种子的尺寸时首次使用了回归预测。他在大量的对象上应用了回归分析,包括人的身高。他注意到,如果双亲的高度比平均高度高的话,则他们的子女也倾向于 ...
1.实验背景 本次实验是Kaggle上的一个入门比赛——Titanic: Machine Learning from Disaster。比赛选择了泰坦尼克号海难作为背景,并提供了样本数据及测试数据,要求我们根据样本数据内容建立一个预测模型,对于测试数据中每个人是否获救做个预测。样本数据包括891 ...
1. Classification 这篇文章我们来讨论分类问题(classification problems),也就是说你想预测的变量 y 是一个离散的值。我们会使用逻辑回归算法来解决分类问题。 之前的文章中,我们讨论的垃圾邮件分类实际上就是一个分类问题。类似的例子还有很多,例如一个在线 ...
一、逻辑回归的概念 逻辑回归又称logistic回归分析,是一种广义的线性回归分析模型,常用于数据挖掘,经济预测等领域。逻辑回归从本质来说属于二分类问题,是基于Sigmoid函数(又叫“S型函数”)的有监督二类分类模型。 二、Sigmoid函数 Sigmoid函数公式 ...
1、逻辑函数 假设数据集有n个独立的特征,x1到xn为样本的n个特征。常规的回归算法的目标是拟合出一个多项式函数,使得预测值与真实值的误差最小: 而我们希望这样的f(x)能够具有很好的逻辑判断性质,最好是能够直接表达具有特征x的样本被分到某类的概率。比如f(x)>0.5的时候能够表示 ...
注:最近开始学习《人工智能》选修课,老师提纲挈领的介绍了一番,听完课只了解了个大概,剩下的细节只能自己继续摸索。 从本质上讲:机器学习就是一个模型对外界的刺激(训练样本)做出反应,趋利避害(评价标准)。 1. 什么是逻辑回归? 许多人对线性回归都比较熟悉,但知道逻辑回归的人可能就要 ...