“没有测量,就没有科学。”这是科学家门捷列夫的名言。在计算机科学中,特别是在机器学习的领域,对模型的测量和评估同样至关重要。只有选择与问题相匹配的评估方法,我们才能够快速的发现在模型选择和训练过程中可能出现的问题,迭代地对模型进行优化。本文将总结机器学习最常见的模型评估指标,其中包括 ...
科学家门捷列夫曾经说过 没有测量,就没有科学 在计算机科学中,特别是在机器学习的领域,对模型的测量和评估同样至关重要。只有选择与问题相匹配的评估方法,我们才能够快速的发现在模型选择和训练过程中可能出现的问题,迭代地对模型进行优化。 本文总结了机器学习常见的模型评估指标,其中包括: Precision Recall PRC F Score ROC和AUC IOU Ap和mAp Inception ...
2019-12-26 10:35 0 1680 推荐指数:
“没有测量,就没有科学。”这是科学家门捷列夫的名言。在计算机科学中,特别是在机器学习的领域,对模型的测量和评估同样至关重要。只有选择与问题相匹配的评估方法,我们才能够快速的发现在模型选择和训练过程中可能出现的问题,迭代地对模型进行优化。本文将总结机器学习最常见的模型评估指标,其中包括 ...
一个深度学习模型在各类任务中的表现都需要定量的指标进行评估,才能够进行横向的对比比较,包含了分类、回归、质量评估、生成模型中常用的指标。 1 分类评测指标 图像分类是计算机视觉中最基础的一个任务,也是几乎所有的基准模型进行比较的任务,从最开始比较简单的10分类的灰度图像手写数字识别mnist ...
摘要:这篇文章主要向大家介绍深度学习分类任务评价指标,主要内容包括基础应用、实用技巧、原理机制等方面,希望对大家有所帮助。 本文分享自华为云社区《深度学习分类任务常用评估指标》,原文作者:lutianfei 。 这篇文章主要向大家介绍深度学习分类任务评价指标,主要内容包括基础应用 ...
一、分类评估指标 准确率(最直白的指标)缺点:受采样影响极大,比如100个样本中有99个为正例,所以即使模型很无脑地预测全部样本为正例,依然有99%的正确率适用范围:二分类(准确率);二分类、多分类(平均准确率) 混淆矩阵 ...
深度学习模型评估指标 一个深度学习模型在各类任务中的表现都需要定量的指标进行评估,才能够进行横向的对比比较,包含了分类、回归、质量评估、生成模型中常用的指标。 1 分类评测指标 图像分类是计算机视觉中最基础的一个任务,也是几乎所有的基准模型进行比较的任务,从最开始比较简单的10分类的灰度图像 ...
本文对机器学习模型评估指标进行了完整总结。机器学习的数据集一般被划分为训练集和测试集,训练集用于训练模型,测试集则用于评估模型。针对不同的机器学习问题(分类、排序、回归、序列预测等),评估指标决定了我们如何衡量模型的好坏 一、Accuracy 准确率是最简单的评价指标,公式 ...
在使用机器学习算法过程中,针对不同的问题需要不用的模型评估标准,这里统一汇总。主要以两大类分类与回归分别阐述。 一、分类问题 1、混淆矩阵 混淆矩阵是监督学习中的一种可视化工具,主要用于比较分类结果和实例的真实信息。矩阵中的每一行代表实例的预测类别,每一列代表实例的真实类别 ...
常用机器学习算法包括分类、回归、聚类等几大类型,以下针对不同模型总结其评估指标 一、分类模型 常见的分类模型包括:逻辑回归、决策树、朴素贝叶斯、SVM、神经网络等,模型评估指标包括以下几种: (1)二分类问题 (a)混淆矩阵 准确率A:预测正确个数占总数的比例 ...