目标检测任务的损失函数由 Classificition Loss 和 Bounding Box Regeression Loss 两部分构成。本文介绍目标检测任务中近几年来Bounding Box Regression Loss Function的演进过程,其演进路线是Smooth L1 Loss ...
论文:Generalized Intersection over Union: A Metric and A Loss for Bounding BoxRegression Distance IoU Loss: Faster and Better Learning for Bounding Box Regression 代码:https: giou.stanford.edu https: gith ...
2019-12-25 17:07 0 5075 推荐指数:
目标检测任务的损失函数由 Classificition Loss 和 Bounding Box Regeression Loss 两部分构成。本文介绍目标检测任务中近几年来Bounding Box Regression Loss Function的演进过程,其演进路线是Smooth L1 Loss ...
1.IOU损失函数 IOU损失表示预测框A和真实框B之间交并比的差值,反映预测检测框的检测效果。 但是,作为损失函数会出现以下问题: 如果两个框没有相交,根据定义,IoU=0,不能度量IoU为零距离远近的程度。同时因为loss=0,没有梯度回传,无法进行学习训练。 IoU无法 ...
IoU、GIoU、DIoU、CIoU损失函数 目标检测任务的损失函数由Classificition Loss和Bounding Box Regeression Loss两部分构成。目标检测任务中近几年来Bounding Box Regression Loss Function的演进过程,其演进 ...
本文来自公众号“每日一醒” 目标检测任务的损失函数由两部分构成:Classification Loss和Bounding Box Regeression Loss。 Smooth L1 Loss L1 Loss(Mean Absolute Error,MAE) 平均 ...
https://zhuanlan.zhihu.com/p/94799295 https://zhuanlan.zhihu.com/p/366744055 https://zhuanlan.zhihu.com/p/359982543 Iou GIou DIou CIou ...
深度学习之损失函数小结 在深度学习中,损失函数扮演着很重要的角色。通过最小化损失函数,使得模型达到收敛状态,减少模型预测值的误差。因此,不同的损失函数,对模型的影响是重大的。下面总结一下常用的损失函数: 图像分类:交叉熵 目标检测:Focal loss、L1/L2损失 ...
论文提出了IoU-based的DIoU loss和CIoU loss,以及建议使用DIoU-NMS替换经典的NMS方法,充分地利用IoU的特性进行优化。并且方法能够简单地迁移到现有的算法中带来性能的提升,实验在YOLOv3上提升了5.91mAP,值得学习 论文:Distance-IoU ...
转:https://www.cnblogs.com/gujianhan/p/6035514.html 普通的深度学习监督算法主要是用来做分类,如图1(1)所示,分类的目标是要识别出图中所示是一只猫。而在ILSVRC(ImageNet Large Scale Visual Recognition ...