在第一章中介绍了逆矩阵与奇异矩阵,我们可以通过一个行列式公式计算二维矩阵的逆,那么更多维矩阵的逆如何求解呢? 逆矩阵与方程组 或许用行列式求逆矩阵的做法有些公式化,实际上可以将求逆矩阵看成解方程组: 由此可以通过解方程组的方式求出逆矩阵。 如果一个方阵与另一个非零矩阵 ...
原文 https: mp.weixin.qq.com s PRQQvSfmipxPBeF aEQ A 一个矩阵有逆矩阵的前提是该矩阵是一个满秩的方阵。然而很多时候遇到的都是长方矩阵,长方矩阵是否有类似的逆矩阵呢 先把 个基本子空间的图贴上,A是m n的矩阵,其中r是矩阵的秩: 两侧逆 sided inverse 我们通常说的逆矩阵都是针对满秩方阵而言,此时AA I A A,A左乘或右乘A 的结果 ...
2019-12-19 21:59 0 5421 推荐指数:
在第一章中介绍了逆矩阵与奇异矩阵,我们可以通过一个行列式公式计算二维矩阵的逆,那么更多维矩阵的逆如何求解呢? 逆矩阵与方程组 或许用行列式求逆矩阵的做法有些公式化,实际上可以将求逆矩阵看成解方程组: 由此可以通过解方程组的方式求出逆矩阵。 如果一个方阵与另一个非零矩阵 ...
3.1 矩阵乘法 行列内积 有 $m \times n$ 矩阵 $\boldsymbol{A}$ 和 $n \times p$ 矩阵 $\boldsymbol{B}$( $\bold ...
线代笔记 ——https://space.bilibili.com/88461692#/ 1.线性相关 (1)你有多个向量,并且可以移除其中一个而不减少张成的空间,当这种情况发生时,相关术语称它们是“线性相关”的。另一种表述就是,这个向量可以表示为其它向量的线性组合,因为这个向量已经落在 ...
说明 课堂教的云里雾里,非常懵,其实线性代数的思路很简单 把细节忘了都行,把思路消化 矩阵就是向量的映射 矩阵就是向量的映射 矩阵就是向量的映射 也可以看做对空间的线性变换 类似f(g(x)),多个矩阵相继变换A(B(x))简写作ABx,即\(x \rightarrow_{B ...
矩阵乘法 A * B = C A,B,C为矩阵,则必须满足形状A:m*n,n*k, m*k——A的列数等于B的行数,C的行数等于A的行数,C的列数等于B的列数 则矩阵的乘法定义为: ...
一.初等矩阵 将单位阵E经过一次变换得到的矩阵称为初等矩阵。初等矩阵都是方阵。这种初等变换有某一行(列)的n倍加到另一行(列)上、互换行列位置、某一行(列)全部乘以某实数三种基本情况。 每 ...
1. 矩阵乘法 如果矩阵 \(B\) 的列为 \(b_1, b_2, b_3\),那么 \(EB\) 的列就是 \(Eb_1, Eb_2, Eb_3\)。 \[\boldsymbol{EB ...
方阵的定义:对于矩阵Amn 当m=n时,A为方阵; 逆阵定义:对于方阵A,使得AB = I = BA,则B为A的逆阵。(I为单位矩阵) 定理: A为可逆矩阵,则其逆阵唯一,用符号A-1表示,记作: AA-1 = I = A-1A。 可逆矩阵为非退化矩阵,不存在逆阵的方阵为退化矩阵 ...