一、前向计算和反向传播数学过程讲解 这里讲解的是平均池化层,最大池化层见本文第三小节 二、测试代码 数据和上面完全一致,自行打印验证即可。 1、前向传播 import tensorflow as tf import numpy as np # 输入张量为3×3的二维矩阵 M ...
padding的规则 padding VALID 时,输出的宽度和高度的计算公式 下图gif为例 输出宽度:output width in width filter width strides width . 向上取整 输出高度:output height in height filter height strides height . 向上取整 输出的形状 , , , VALID步长 如果str ...
2019-12-07 23:02 0 361 推荐指数:
一、前向计算和反向传播数学过程讲解 这里讲解的是平均池化层,最大池化层见本文第三小节 二、测试代码 数据和上面完全一致,自行打印验证即可。 1、前向传播 import tensorflow as tf import numpy as np # 输入张量为3×3的二维矩阵 M ...
参考:https://blog.csdn.net/kyang624823/article/details/78633897 卷积层 池化层反向传播: 1,CNN的前向传播 a)对于卷积层,卷积核与输入矩阵对应位置求积再求和,作为输出矩阵对应位置的值。如果输入矩阵inputX为M*N大小 ...
卷积神经网络(CNN)由输入层、卷积层、激活函数、池化层、全连接层组成,即INPUT-CONV-RELU-POOL-FC (1)卷积层:用它来进行特征提取,如下: 输入图像是32*32*3,3是它的深度(即R、G、B),卷积层是一个5*5*3的filter(感受野),这里注意:感受野的深度 ...
还是分布式设备上的实现效率都受到一致认可。 CNN网络中的卷积和池化层应该怎么设置呢?tf相应的函数 ...
构建了最简单的网络之后,是时候再加上卷积和池化了。这篇,虽然我还没开始构思,但我知道,一 ...
卷积神经网络是在BP神经网络的改进,与BP类似,都采用了前向传播计算输出值,反向传播调整权重和偏置;CNN与标准的BP最大的不同是:CNN中相邻层之间的神经单元并不是全连接,而是部分连接,也就是某个神经单元的感知区域来自于上层的部分神经单元,而不是像BP那样与所有的神经单元相连接。CNN ...
之前深度学习中一般只在卷积中涉及到padding: 现在在Tensorflow学习过程中,发现在池化过程中,大量应用到SAME填充: 现在我们来看看池化过程中padding到底是如何工作的? 卷积填充了解:http://www.ai-start.com ...
卷积层Conv的输入:高为h、宽为w,卷积核的长宽均为kernel,填充为pad,步长为Stride(长宽可不同,分别计算即可),则卷积层的输出维度为: 其中上开下闭开中括号表示向下取整。 MaxPooling层的过滤器长宽设为kernel*kernel,则池化层的输出维度也适用于上述 ...