牛顿迭代法 牛顿迭代法(Newton's method)又称为牛顿-拉夫逊方法(Newton-Raphson method),它是牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法。多数方程不存在求根公式,因此求精确根非常困难,甚至不 ...
第二篇随笔 年 月底,工科男曹 要算一个方程f x 的根,其中f x 表达式为: 因为实数范围内f x 的根太多,所以本文只研究 lt x lt 的情况.这个式子长的太丑了,曹 看着觉得不爽,导之,得一f x 这个式子更丑,但是,我们有牛顿迭代法,可以构造迭代序列 xn 满足: 其中f xn 不等于 .可以证明,只要初值选的好,序列可以收敛到要求的根.然后就可以写程序求根了. 先上函数图像 由de ...
2019-11-30 21:42 0 484 推荐指数:
牛顿迭代法 牛顿迭代法(Newton's method)又称为牛顿-拉夫逊方法(Newton-Raphson method),它是牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法。多数方程不存在求根公式,因此求精确根非常困难,甚至不 ...
用牛顿迭代法求下面方程在1.5附近的根: 答案解析: 牛顿迭代法的公式为: \(x_{n+1}\) = \(x_{n}\) - \(\frac{f(x_{n})}{f'(x_{n})}\) 其中,\(x_{n}\)为输出的值,在该题目当中为1.5。\(f(x_{n})\)为公式2\(x ...
比二分更快的方法 如果要求一个高次方程的根,我们可以用二分法来做,这是最基础的方法了。但是有没有更好更快的方法呢? 我们先来考察一个方程f(x)的在点a的泰勒展开,展开到一阶就可以了(假设f(x)在点a可以泰勒展开,也就是泰勒展开的那个余项在n趋于无穷时趋于 ...
用牛顿迭代法求下面方程在1.5附近的根: 答案解析: 牛顿迭代法的公式为: $x_{n+1}$ = $x_{n}$ - $\frac{f(x_{n})}{f'(x_{n})}$ 其中,$x_{n}$为输出的值,在该题目当中为1.5。$f(x_{n})$为公式2$x^3$- 4$x ...
迭代法是用于求方程或方程组近似根的一种常用的算法设计方法。设方程为f(x)=0,用某种数学方法导出等价的形式x=g(x),然后按以下步骤执行: (1)选一个方程的近似根,赋给变量x0。 (2)将x0的值保存于变量x1,然后计算g(x1),并将结果存于变量 ...
用牛顿迭代法求下面方程在1.5附近的根: 2\(x^3\)- 4\(x^2\) + 3\(x\) - 6= 0 答案解析: 牛顿迭代法的公式为: \(x_{n+1}\) = \(x_{n}\) - \(\frac{f(x_{n})}{f'(x_{n})}\) 其中,\(x_{n ...
牛顿迭代法求解方程的根 引题:用牛顿迭代法求下列方程在值等于x附近的根: 2 x 3 − ...
#include <stdio.h>#include <math.h>int main() { double x0,x1,fx,fx2; x0=1.5; wh ...