在深度学习中,前向传播与反向传播是很重要的概念,因此我们需要对前向传播与反向传播有更加深刻的理解,假设这里有一个三层的神经网络 在这里,上面一排表示的是前向传播,后面一排表示的是反向传播,在前向传播的情况每一层将通过一层激活函数去线性化,并且在前向传播的过程中会缓存z[l],最终输出y ...
正向传播 反向传播 训练深度学习模型 小结 前几节里面我们使用了小批量随机梯度下降的优化算法来训练模型。在实现中,我们只提供了模型的正向传播的 forward propagation 计算,即对于输入计算模型输出,然后通过autograd模块来调用系统自动生成的bachward函数来计算梯度。本节将使用数学和计算图 computational graph 两个方式来描述正向传播和反向传播。具体来 ...
2019-11-16 11:03 0 326 推荐指数:
在深度学习中,前向传播与反向传播是很重要的概念,因此我们需要对前向传播与反向传播有更加深刻的理解,假设这里有一个三层的神经网络 在这里,上面一排表示的是前向传播,后面一排表示的是反向传播,在前向传播的情况每一层将通过一层激活函数去线性化,并且在前向传播的过程中会缓存z[l],最终输出y ...
理解反向传播 要理解反向传播,先来看看正向传播。下面是一个神经网络的一般结构图: 其中,\(x\) 表示输入样本,\(\bm{w}\) 表示未知参数(图中未标出偏置 \(b\)), \(S\) 表示激活函数,\(y\) 表示预测值,\(\hat{y}\) 表示真实值。 显然,通过从样本 \(x ...
1、反向传播 简单的理解,反向传播的确就是复合函数的链式法则,但其在实际运算中的意义比链式法则要大的多。 链式求导十分冗余,因为很多路径被重复访问了,对于权值动则数万的深度模型中的神经网络,这样的冗余所导致的计算量是相当大的。 同样是利用链式法则,BP算法则机智地避开了这种冗余 ...
直观理解反向传播 反向传播算法是用来求那个复杂到爆的梯度的。 上一集中提到一点,13000维的梯度向量是难以想象的。换个思路,梯度向量每一项的大小,是在说代价函数对每个参数有多敏感。 如上图,我们可以这样里理解,第一个权重对代价函数的影响是是第二个的32倍。 我们来考虑一个还没有 ...
概率 高斯分布 高斯分布(Gaussian Distribution) 又叫正态分布(Normal Distribution), 记作\(N(μ,σ^2)\),概率密度和为 1。 \[P ...
ReLU层的设计: ReLU函数: 导数: Sigmoid层的设计: Affine 层: Softmax-with-Loss 层的实现 对应误差反向传播法的神经网络的实现: ...
目录 链式法则 逻辑回归的正、反向传播 逻辑回归的正、反向传播案例 全连接神经网络的正、反向传播 全连接神经网络的正、反向传播案例 参考资料 链式法则 类型一: 类型二: 类型 ...
简述 深度前馈网络(deep feedforward network), 又叫前馈神经网络(feedforward neural network)和多层感知机(multilayer perceptron, MLP) . 深度前馈网络之所以被称为网络(network),因为它们通常由许多 ...