2019年7月,百度ERNIE再升级,发布持续学习的语义理解框架ERNIE 2.0,及基于此框架的ERNIE 2.0预训练模型, 它利用百度海量数据和飞桨(PaddlePaddle)多机多卡高效训练优势,通过深度神经网络与多任务学习等技术,持续学习海量数据和知识。基于该框架的艾尼(ERNIE)预 ...
年 月,百度正式发布NLP模型ERNIE,其在中文任务中全面超越BERT一度引发业界广泛关注和探讨。经过短短几个月时间,百度ERNIE再升级,发布持续学习的语义理解框架ERNIE . ,及基于此框架的ERNIE . 预训练模型。继 . 后,ERNIE英文任务方面取得全新突破,在共计 个中英文任务上超越了BERT和XLNet, 取得了SOTA效果。 本篇内容可以说是史上最强实操课程,由浅入深完整带 ...
2019-11-08 11:47 0 979 推荐指数:
2019年7月,百度ERNIE再升级,发布持续学习的语义理解框架ERNIE 2.0,及基于此框架的ERNIE 2.0预训练模型, 它利用百度海量数据和飞桨(PaddlePaddle)多机多卡高效训练优势,通过深度神经网络与多任务学习等技术,持续学习海量数据和知识。基于该框架的艾尼(ERNIE)预 ...
随着bert在NLP各种任务上取得骄人的战绩,预训练模型在这不到一年的时间内得到了很大的发展,本系列的文章主要是简单回顾下在bert之后有哪些比较有名的预训练模型,这一期先介绍几个国内开源的预训练模型。 一,ERNIE(清华大学&华为诺亚) 论文:ERNIE: Enhanced ...
PyTorch-Transformers(正式名称为 pytorch-pretrained-bert)是一个用于自然语言处理(NLP ...
百度发布首个大规模隐变量对话模型PLATO - 飞桨PaddlePaddle的文章 - 知乎 https://zhuanlan.zhihu.com/p/131019469 PLATO: Pre-trained Dialogue GenerationModel with Discrete ...
在2017年之前,语言模型都是通过RNN,LSTM来建模,这样虽然可以学习上下文之间的关系,但是无法并行化,给模型的训练和推理带来了困难,因此有人提出了一种完全基于attention来对语言建模的模型,叫做transformer。transformer摆脱了NLP任务对于RNN,LSTM的依赖 ...
1. 下载训练、验证、测试数据和 VOCdevkit,下载地址: http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtrainval_06-Nov-2007.tar http://host.robots.ox.ac.uk/pascal ...
一、分布式词表示(直接使用低维、稠密、连续的向量表示词)(静态的表示) 1、Word2Vec 训练方法:用中心词预测周围词。 局限性:Word2Vec产生的词向量只有每个单词独立的信息,而没有上下文的信息。 2、Glove Global Vector for Word ...
参考:http://share.baidu.com/code/advance 添加普通页面分享: 设置多组分享: 浮窗分享: 浮窗分 ...