:torch.nn.register_parameter()用于注册Parameter实例到当前Module中(一般可以用to ...
register parameter nn.Parameters 与 register parameter 都会向 parameters写入参数,但是后者可以支持字符串命名。 从源码中可以看到,nn.Parameters为Module添加属性的方式也是通过register parameter向 parameters写入参数。 程序返回为: ...
2019-10-31 20:38 0 1597 推荐指数:
:torch.nn.register_parameter()用于注册Parameter实例到当前Module中(一般可以用to ...
pytorch——nn.Module 构建深度学习模型的话,用autograd太抽象、底层、代码量大实现麻烦,提供了nn.Module比较方便。nn.Module代表某一次或者某几层的nn。一般是基础nn.Module,写自己的nn/nn的某层 一、Module基本知识介绍 ...
前言: 我们知道,pytorch一般情况下,是将网络中的参数保存成OrderedDict(见附1)形式的。这里的参数其实包括2种:一种是模型中的各种module含的参数,即nn.Parameter,我们当然可以在网络中定义其他的nn.Parameter参数。另外一种 ...
在PyTorch中nn.Module类是用于定义网络中前向结构的父类,当要定义自己的网络结构时就要继承这个类。现有的那些类式接口(如nn.Linear、nn.BatchNorm2d、nn.Conv2d等)也是继承这个类的,nn.Module类可以嵌套若干nn.Module的对象,来形成网络结构 ...
nn.Module() 目录 nn.Module() nn.Module() 1、核心 2、查看 3、设置 4、注册 5、转换 6、加载 如何将模型 ...
测试代码: import torch.nn as nnclass Model(nn.Module): def __init__(self): super(Model, self).__init__() self.conv1 = nn.Conv2d(10, 20 ...
在刷官方Tutorial的时候发现了一个用法self.v = torch.nn.Parameter(torch.FloatTensor(hidden_size)),看了官方教程里面的解释也是云里雾里,于是在栈溢网看到了一篇解释,并做了几个实验才算完全理解了这个函数。首先可以把这个函数 ...
初始化: ...