1.Kmeans算法 1.1算法思想 kmeans算法又名k均值算法,是一个重复移动类中心点的过程,把类的中心点,也称重心(centroids),移动到其包含成员的平均位置,然后重新划分其内部成员。k是算法计算出的超参数,表示类的数量;Kmeans可以自动分配样本到不同的类,但是不能决定 ...
概述 该方法属于无监督学习算法 无y值 。根据已有的数据,利用距离远近的思想将目标数据集聚为指定的k个簇。簇内样本越相似,聚类的效果越好。需要注意的是如若数据存在量纲上的差异,必须先进行标签化处理。或者数据集中含有离散型字符变量,需先设置成哑变量或进行数值化。对于未知簇个数的数据集,需要先确定簇数,再进行聚类操作。 应用方面常用在聚类模型中。比如电商平台历史交易数据,划分不同的价值等级 如VIP ...
2019-10-30 22:48 0 409 推荐指数:
1.Kmeans算法 1.1算法思想 kmeans算法又名k均值算法,是一个重复移动类中心点的过程,把类的中心点,也称重心(centroids),移动到其包含成员的平均位置,然后重新划分其内部成员。k是算法计算出的超参数,表示类的数量;Kmeans可以自动分配样本到不同的类,但是不能决定 ...
下面的demo是根据kmeans算法原理实现的demo,使用到的数据是kmeans.txt View Code 下面这个demo是使用sklearn库实现聚类 当数据量很大的时候,会出现原始聚类算法 ...
1、聚类算法又叫做“无监督分类”,其目的是将数据划分成有意义或有用的组(或簇)。这种划分可以基于我们的业务需求或建模需求来完成,也可以单纯地帮助我们探索数据的自然结构和分布。 2、KMeans算法将一组N个样本的特征矩阵X划分为K个无交集的簇,直观上来看是簇是一组一组聚集在一起的数据 ...
function kmeans()clear all;clc;k=3;%k为聚类个数x = 0.8 + sqrt(0.01) * randn(100,2); %随机生成数据集y = 0.2 + sqrt(0.02) * randn(100,2);z= 0.5 + sqrt(0.01 ...
一. 概述 首先需要先介绍一下无监督学习,所谓无监督学习,就是训练样本中的标记信息是未知的,目标是通过对无标记训练样本的学习来揭示数据的内在性质以及规律。通俗得说,就是根据数据的一些内在性质,找出其内在的规律。而这一类算法,应用最为广泛的就是“聚类”。 聚类算法可以对数据进行数据归约,即在尽可 ...
python的多元高斯生成起来好麻烦,所以只好用matlab先生成测试数据然后再进行测试了。cnblogs上面写公式好麻烦,所以就不多写了。上代码吧。 kmeans的基本思想就是通过迭代的方法,更新不同类别的的数据均值,从而达到聚类的目的,因为需要先固定一个均值μiold,然后再通过梯度的方法 ...
算法的概念不做过都解释,google一下一大把。直接贴上代码,有比较详细的注释了。 主程序: 自定义Point类: 测试数据集: ...
一. 概述 首先需要先介绍一下无监督学习,所谓无监督学习,就是训练样本中的标记信息是位置的,目标是通过对无标记训练样本的学习来揭示数据的内在性质以及规律。通俗得说,就是根据数据的一些内在性质,找出其内在的规律。而这一类算法,应用最为广泛的就是“聚类”。 聚类算法可以对数据进行数据归约,即在尽可 ...