一、KNN算法原理 K近邻法(k-nearst neighbors,KNN)是一种很基本的机器学习方法。 它的基本思想是: 在训练集中数据和标签已知的情况下,输入测试数据,将测试数据的特征与训练集中对应的特征进行相互比较,找到训练集中与之最为相似的前K个数据,则该测试数据对应的类别 ...
一 线性回归算法的原理 回归是基于已有数据对新的数据进行预测,比如预测股票走势。这里我们主要讲简单线性回归。基于标准的线性回归,可以扩展出更多的线性回归算法。 线性回归就是能够用一个直线较为精确地描述数据之间的关系,这样当出现新的数据的时候,就能够预测出一个简单的值。 线性回归的模型形如: 线性回归得出的模型不一定是一条直线: 在只有一个变量的时候,模型是平面中的一条直线 有两个变量的时候,模型是 ...
2019-10-26 23:30 0 4940 推荐指数:
一、KNN算法原理 K近邻法(k-nearst neighbors,KNN)是一种很基本的机器学习方法。 它的基本思想是: 在训练集中数据和标签已知的情况下,输入测试数据,将测试数据的特征与训练集中对应的特征进行相互比较,找到训练集中与之最为相似的前K个数据,则该测试数据对应的类别 ...
【机器学习】算法原理详细推导与实现(一):线性回归 今天我们这里要讲第一个有监督学习算法,他可以用于一个回归任务,这个算法叫做 线性回归 房价预测 假设存在如下 m 组房价数据: 面积(m^2) 价格(万元) 82.35 ...
目录 1.逻辑回归 2.支持向量机 3.决策树 4.KNN算法 5.朴素贝叶斯算法 6.随机森林 7.AdaBoost算法 8.GBDT算法 9.XGBoost 10.人工神经网络 1.逻辑回归 二项logistic回归模型是一种分类模型,由条件概率分布P(Y|X ...
1决策树(Decision Trees)的优缺点 决策树的优点: 一、 决策树易于理解和解释.人们在通过解释后都有能力去理解决策树所表达的意义。 二、 对于决策树,数据的准备往往是简单或者是不必要的.不需要预处理数据 ...
。 我们将根据自己的经验讨论每种算法的优缺点。 对机器学习算法进行分类是棘手的,有几种合理的方法; 机器学习算法可以 ...
的经验,讨论每个算法的优缺点。而机器之心也在文末给出了这些算法的具体实现细节。 对机器学习算法 ...
本文来自同步博客。 P.S. 不知道怎么如何更好地显示数学公式和排版文章。所以如果觉得文章下面格式乱的话请自行跳转到上述链接。后续我将不再对数学公式进行截图,毕竟行内公式截图的话排版会很乱。看原博客地址会有更好的体验。 上一篇文章介绍如何使用sklearn进行线性回归预测。接下来本文将深入原理 ...
大体上是Ng课week2的编程作业总结,作业中给出了实现非常好(主要是正常人都能看得懂。。)的linear regression比较完整的代码。 因为是在MATLAB/Octave环境下编程 ...