原文:深度学习:padding、卷积、stride的计算

https: testerhome.com topics ...

2019-10-26 21:56 0 488 推荐指数:

查看详情

深度学习-边缘检测卷积核阐述、padding的意义、三维卷积

左边10的部分表示较亮的部分,可以看到将左边图片中间的线-->右边图片扩大加粗了。 区分 两者的变化。 2、padding的意义:(n+2p-(f-1))**2 有步长[(n+2p-f)/s ]+1 第一、防止图片经过多次卷积之后大小变 ...

Sat Oct 02 03:49:00 CST 2021 0 94
卷基层stride,padding,kernel_size和卷积前后特征图尺寸之间的关系

现在假设卷积前的特征图宽度为N,卷积后输出的特征图宽度为M,那么它们和上述设置的参数之间的关系是怎样的呢?首先可以确定的是padding之后的矩阵宽度等于N+2 x padding。另一方面,卷积核滑动次数等于M-1 根据上图的关系,可以建立下面的等式 于是输出 ...

Wed Sep 08 19:08:00 CST 2021 0 202
卷积与反卷积以及步长stride

1. 卷积与反卷积 如上图演示了卷积核反卷积的过程,定义输入矩阵为 I(4×4),卷积核为 K(3×3),输出矩阵为 O(2×2): 卷积的过程为:Conv(I,W)=O 反卷积的过称为:Deconv(W,O)=I(需要对此时的 O 的边缘进行延拓 padding) 2. 步长 ...

Sat Sep 09 22:58:00 CST 2017 0 2193
深度学习卷积的参数量与计算

普通卷积 输入卷积:Win * Hin * Cin卷积核:k * k 输出卷积:Wout * Hout * Cout 参数量:(即卷积核的参数)k * k * Cin * Cout或者:(k * k * Cin + 1) * Cout (包括偏置bias)计算量:k * k * Cin ...

Thu May 28 18:43:00 CST 2020 0 2679
深度学习卷积的理解

1、参数共享的道理   如果在图像某些地方探测到一个水平的边界是很重要的,那么在其他一些地方也会同样是有用的,这是因为图像结构具有平移不变性。所以在卷积层的输出数据体的55x55个不同位置中,就没有必要重新学习去探测一个水平边界了。   在反向传播的时候,都要计算每个神经元对它的权重的梯度 ...

Mon May 14 19:07:00 CST 2018 0 6364
深度学习可形变卷积

深度学习可形变卷积 Deformable Convolutional Networks 参考文献链接:https://arxiv.org/pdf/1703.06211.pdf 参考代码链接: https://github.com/ msracver/Deformable-ConvNets ...

Fri May 08 15:51:00 CST 2020 0 1190
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM