条件概率 •设A,B为任意两个事件,若P(A)>0,我们称在已知事件A发生的条件下,事件B发生的概率为条件概率,记为P(B|A),并定义 乘法公式 •如果P(A)>0 ...
贝叶斯公式 贝叶斯公式由英国数学家贝叶斯 Thomas Bayes 发展,用来描述两个条件概率之间的关系,比如 P A B 和 P B A 。按照乘法法则,可以立刻导出:P A B P A P B A P B P A B 。如上公式也可变形为:P A B P B A P A P B 。由于其有着坚实的数学基础,贝叶斯分类算法的误判率是很低的。贝叶斯方法的特点是结合先验概率和后验概率,即避免了只使用 ...
2019-10-26 21:22 0 1175 推荐指数:
条件概率 •设A,B为任意两个事件,若P(A)>0,我们称在已知事件A发生的条件下,事件B发生的概率为条件概率,记为P(B|A),并定义 乘法公式 •如果P(A)>0 ...
朴素贝叶斯模型 朴素贝叶斯的应用 朴素贝叶斯模型是文本领域永恒的经典,广泛应用在各类文本分析的任务上。只要遇到了文本分类问题,第一个需要想到的方法就是朴素贝叶斯,它在文本分类任务上是一个非常靠谱的基准(baseline)。 比如对于垃圾邮件的分类,朴素贝叶斯 ...
目录 一、贝叶斯 什么是先验概率、似然概率、后验概率 公式推导 二、为什么需要朴素贝叶斯 三、朴素贝叶斯是什么 条件独立 举例:长肌肉 拉普拉斯平滑 半朴素贝叶斯 一、贝叶斯 ...
先上问题吧,我们统计了14天的气象数据(指标包括outlook,temperature,humidity,windy),并已知这些天气是否打球(play)。如果给出新一天的气象指标数据:sunny,c ...
朴素贝叶斯详解 此博客参考借鉴算法学习者的blog,链接地址如下:https://blog.csdn.net/AMDS123/article/details/70173402#reply%23reply 贝叶斯分类是一类分类算法的总称,这类算法均以贝叶斯定理为基础,故统称为贝叶斯分类。而朴素贝 ...
目录 贝叶斯公式 极大似然估计 贝叶斯估计 朴素贝叶斯算法 频率 VS 概率 贝叶斯公式 贝叶斯公式: \[P(A|B)=\frac{P(B|A)P(A)}{P(B)} \] 在\(B\)出现的前提下\(A\)出现的概率 ...
总共有4节内容,如果你对贝叶斯分类已经熟悉,只想看看它在图像分类中的应用,请直接跳到第4节。 1、 ...
朴素贝叶斯算法 👉 naive_bayes.MultinomialNB 朴素贝叶斯算法,主要用于分类. 例如:需要对垃圾邮件进行分类 分类思想 , 如何分类 , 分类的评判标准??? 预测文章的类别概率, 预测某个样本属于 N个目标分类的相应概率,找出最大 ...