为了更好理解,给出一道例题: 那么偏导数是什么呢,例如就是与X轴方向平行时的方向导数。 证明 ...
目录 写在前面 偏导数 方向导数 梯度 等高线图中的梯度 隐函数的梯度 小结 参考 博客:blog.shinelee.me 博客园 CSDN 写在前面 梯度是微积分中的基本概念,也是机器学习解优化问题经常使用的数学工具 梯度下降算法 ,虽然常说常听常见,但其细节 物理意义以及几何解释还是值得深挖一下,这些不清楚,梯度就成了 熟悉的陌生人 ,仅仅 记住就完了 在用时难免会感觉不踏实,为了 用得放心 ...
2019-10-21 17:59 3 7395 推荐指数:
为了更好理解,给出一道例题: 那么偏导数是什么呢,例如就是与X轴方向平行时的方向导数。 证明 ...
方向导数,偏导数,梯度 一、总结 一句话总结: 方向导数:曲面的每一个点是有很多条切线的,不同方向的切线就是方向导数。 偏导数:例如f(x0,y0)对x求偏导就是与X轴方向平行时的方向导数。 梯度:梯度的方向是最大的方向导数,是f(x,y)这一点增长最快的方向。 二、方向导数 ...
原作者:WangBo_NLPR 原文:https://blog.csdn.net/walilk/article/details/50978864 原作者:Eric_LH 原文:https://blog ...
导数 设有一元函数 \(\normalsize y=f(x)\) 则函数在点 \(\normalsize x_{0}\) 处的导数为 \(\normalsize f^{'}(x_{0})=\lim_{\Delta x\rightarrow 0}\frac{f(x_{0}+\Delta ...
0、总结 参考:https://blog.csdn.net/eric_lh/article/details/78994461 1、定义 参考:https://blog.csdn.net/qq_48736958/article/details/114543957 ① 导数: 反映 ...
1.方向导数定义 设开集\(D \subset \mathbf{R}^{n}, f : D \rightarrow \mathbf{R},\overrightarrow{u}\)是一个方向,如果极限\(\displaystyle\lim _{t \rightarrow 0} \frac{f ...
一个最简单的例子:f(x,y)=x+y 那么全微分df=dx+dy 因为这个f(x,y)对x和y都是线性的,所以df=dx+dy对大的x和y变化也成立。 将x和y方向分开看,x方向每增加dx=1(y不变),f(x,y)增加df=1;y方向每增加dy=1(x不变),f(x,y)也增加df ...
导数,方向导数,切线、梯度是从高中就开始接触的概念,然而对这几个概念的认识不清,困惑了我很长时间,下面我将以图文并茂的形式,对这几个概念做详细的解释。 1, 导数 定义:设函数y=f(x)在点x0的某个邻域内有定义,当自变量x在x0处有增量Δx,(x0+Δx)也在该邻域内时,相应地函数取得增量 ...