线性回归 算法优缺点: 优点:结果易于理解,计算不复杂 缺点:对非线性数据拟合不好 适用数据类型:数值型和标称型 算法思想: 这里是采用了最小二乘法计算(证明比较冗长略去)。这种方式的优点是计算简单,但是要求 ...
机器学习 线性回归 本文代码均来自于 机器学习实战 分类算法先说到这里,接下来说一个回归算法 线性回归 线性回归比较简单,就不怎么说了,要是模型记不得了就百度一下吧,这里列一下公式就直接上代码了 线性回归的一个问题就是可能会出现欠拟合现象,因为它求的是具有最小均方误差的无偏估计,所以如果模型欠拟合的话将不能得到最好的预测效果.所以有些方法允许在估计中引如一些偏差,从而降低预测的均方误差。其中一个方 ...
2019-10-18 23:47 0 934 推荐指数:
线性回归 算法优缺点: 优点:结果易于理解,计算不复杂 缺点:对非线性数据拟合不好 适用数据类型:数值型和标称型 算法思想: 这里是采用了最小二乘法计算(证明比较冗长略去)。这种方式的优点是计算简单,但是要求 ...
线性回归的一个问题可能是有可能出现欠拟合(如下图所示样本),因为它求的是具有最小均方误差的无偏估计。如果模型欠拟合将不能取得最好的预测效果。所以有些方法允许在估计中引入一些偏差,从而降低预测的均方误差。其中的一个方法是局部加权线性回归。在该算法中,我们给待预测点附近的每一个点赋予一定的权重,在这 ...
目录: 1、简述 2、数学表达 3、总结 1、简述 线性回归是一种 parametric learning algorithm,而局部加权线性回归是一种 non-parametric learning algorithm。Parametric learning ...
前言 回顾一下 回归(一)中的 标准线性回归: step1: 对于训练集,求系数w,使得 最小 step2: 对于新输入x,其预测输出为w*x 从中我们知道,标准线性回归可能表达能力比较差,出现如图所示的欠拟合的情况(underfitting ...
回归是统计学中最有力的工具之一。机器学习监督学习算法分为分类算法和回归算法两种,其实就是根据类别标签分布类型为离散型、连续性而定义的。回归算法用于连续型分布预测,针对的是数值型的样本,使用回归,可以在给定输入的时候预测出一个数值,这是对分类方法的提升,因为这样可以预测连续型数据而不仅仅是离散的类别 ...
输出是一个连续的数值。 模型表示 对于一个目标值,它可能受到多个特征的加权影响。例如宝可梦精灵的进化的 cp 值,它不仅受到进化前的 cp 值的影响,还可能与宝可梦的 hp 值、类型、高度以及重量相关。因此,对于宝可梦进化后的 cp 值,我们可以用如下线性公式来表示: \[y=b+ ...
看下面三幅图,x 轴是房间面积,y 轴是房价。 左图是 y = θ0 + θ1x 拟合数据集的结果。可以看到数据并不贴靠在直线上,所以拟合并不好。 中图是 y = θ0 + θ1x + θ2x ...
前言 由于本部分内容讲解资源较多,本文不做过多叙述,重点放在实际问题的应用上。 一、线性回归 线性回归中的线性指的是对于参数的线性的,对于样本的特征不一定是线性的。 线性模型(矩阵形式):y=XA+e 其中:A为参数向量,y为向量,X为矩阵,e为噪声向量。 对于线性模型 ...