编程练习(一):线性回归 文件清单 ex1.m ex1_multi.m ex1data1.txt - ex1.m 用到的数据组 ex1data2.txt - ex1_multi.m 用到的数据组 submit.m - 提交 ...
注:练习来自于吴恩达机器学习 翻译后的题目: 你是一个餐厅的老板,你想在其他城市开分店,所以你得到了一些数据 数据在本文最下方 ,数据中包括不同的城市人口数和该城市带来的利润。第一列是城市的人口数,第二列是在这个城市开店所带来的利润数。 现在,假设 和 都是 ,计算CostFunction,即计算损失函数 首先,本题线性回归的公式应该是这样的: H X 简单的来说,本题中, 和 都为 ,即求H 的 ...
2019-10-04 14:11 0 506 推荐指数:
编程练习(一):线性回归 文件清单 ex1.m ex1_multi.m ex1data1.txt - ex1.m 用到的数据组 ex1data2.txt - ex1_multi.m 用到的数据组 submit.m - 提交 ...
本篇讲述以下内容: 单变量线性回归 代价函数 梯度下降 单变量线性回归 回顾上节,在回归问题中,我们给定输入变量,试图映射到连续预期结果函数上从而得到输出。单变量线性回归就是从一个输入值预测一个输出值。输入/输出的对应关系就是一个线性函数。 下面是一个根据房屋面积预测房屋 ...
表达模型 变量表示: x(i) : 第 i 个输入变量,也称为输入特征 y(i) : 第 i 个输入变量,即我们希望预测的内容 (x(i), y(i)) ; i = 1,...,m : 表示一个训练集 X : 输入值空间; Y : 输出值空间 模型的表达: 对于监督学习来说 ...
作者|Vagif Aliyev 编译|VK 来源|Towards Data Science 线性回归可能是最常见的算法之一,线性回归是机器学习实践者必须知道的。这通常是初学者第一次接触的机器学习算法,了解它的操作方式对于更好地理解它至关重要。 所以,简单地说,让我们来分解一下真正的问题 ...
一、纲要 线性回归的正规方程解法 局部加权线性回归 二、内容详述 1、线性回归的正规方程解法 线性回归是对连续型的数据进行预测。这里讨论的是线性回归的例子,对于非线性回归先不做讨论。这部分内容我们用的是正规方程的解法,理论内容在之前已经解释过了,正规方程为θ = (XT ...
单变量线性回归 模型描述 代价函数。 即讨论如何选择预测函数中的参数θ0和θ1,使得函数与实际数据点尽量好的拟合。使平方差尽量小。 m指训练集的样本容量。改变θ0和θ1求代价函数J(θ0,θ1)函数的最小值。也叫平方误差函数或平方误差代价函数。 若只有一个 ...
一、线性回归的概念 1.1、定义 线性回归通过一个或者多个自变量与因变量之间之间进行建模的回归分析。其中特点为一个或多个称为回归系数的模型参数的线性组合。 优点:结果易于理解,计算不复杂。 缺点:对非线性的数据拟合不好 ...
输出是一个连续的数值。 模型表示 对于一个目标值,它可能受到多个特征的加权影响。例如宝可梦精灵的进化的 cp 值,它不仅受到进化前的 cp 值的影响,还可能与宝可梦的 hp 值、类型、高度以及重量相关。因此,对于宝可梦进化后的 cp 值,我们可以用如下线性公式来表示: \[y=b+ ...