简介 前置声明:本专栏的所有文章皆为本人学习时所做笔记而整理成篇,转载需授权且需注明文章来源,禁止商业用途,仅供学习交流.(欢迎大家提供宝贵的意见,共同进步) 正文: 机器学习,顾名思义,就是研究计算机如何学习和模拟人类的行为,并根据已学得的知识对该行为进行增强和改进。 举例来说,假设邮箱 ...
目录 一:学习机器学习原因和能够解决的问题 .原因 .机器学习能够解决的问题 二:为什么选择python作为机器学习的语言 三:机器学习常用库简介 .scikit learn .Jupyter notebook .NumPy .SciPy .matplotlib .pandas .mglearn .导入机器学习常用库 四:机器学习流程 .实际问题抽象成数学问题 .获取数据 .分析 .特征工程 . ...
2019-10-02 21:33 1 700 推荐指数:
简介 前置声明:本专栏的所有文章皆为本人学习时所做笔记而整理成篇,转载需授权且需注明文章来源,禁止商业用途,仅供学习交流.(欢迎大家提供宝贵的意见,共同进步) 正文: 机器学习,顾名思义,就是研究计算机如何学习和模拟人类的行为,并根据已学得的知识对该行为进行增强和改进。 举例来说,假设邮箱 ...
欢迎大家前往腾讯云社区,获取更多腾讯海量技术实践干货哦~ 导语: 本文是对机器学习算法的一个概览,以及个人的学习小结。通过阅读本文,可以快速地对机器学习算法有一个比较清晰的了解。本文承诺不会出现任何数学公式及推导,适合茶余饭后轻松阅读,希望能让读者比较舒适地获取到一点有用的东西 ...
简介 机器学习是一门多领域交叉学科,涉及概率论、统计学、逼近论等多门学科。它是人工智能(AI)的核心,是使计算机具有智能的根本途径。目前已广泛应用于数据挖掘、计算机视觉、自然语言处理、检测信用卡欺诈、证券市场分析、搜索引擎、无人驾驶、机器人等领域。 分类 按照学习方法 监督式学习 ...
<一>:特征工程:将原始数据转化为算法数据 一:特征值抽取 1:对字典数据 :from sklearn.feature_extraction import DictVectorizer ...
目录 1.基本概念 2.选择机器学习算法 3.使用R进行机器学习 1.基本概念 机器学习:发明算法将数据转化为智能行为 数据挖掘 VS 机器学习:前者侧重寻找有价值的信息,后者侧重执行已知的任务。后者是前者的先期准备 过程:数据——> ...
最近在研究机器学习,随手将学习的过程记录下来,方面自己的学习与回顾 1. 机器学习是什么? 机器学习(Machine Learning,ML)是专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能的一门科学技术。 它使用 ...
Boosting 是一族可将弱学习器提升为强学习器的算法。 关于 Boosting 的两个核心问题: 1.在每一轮如何改变训练数据的权值或概率分布? 通过提高那些在前一轮被弱分类器分错样例的权值,减小前一轮分对样本的权值,而误分的样本在后续受到更多的关注 ...
Random Forest是加州大学伯克利分校的Breiman Leo和Adele Cutler于2001年发表的论文中提到的新的机器学习算法,可以用来做分类,聚类,回归,和生存分析,这里只简单介绍该算法在分类上的应用。 Random Forest(随机森林)算法是通过训练多个决策树 ...