概述 本篇介绍多计算节点上的pytorch分布式训练。从环境配置到运行demo的所有步骤,step by step。没有理论原理,理论原理可以参考这里. 基础环境 多台linux计算节点,通过网络连接,不同主机之间可以相互ping通。网速越快越好,如果通信速度比较慢,就不用怎么考虑 ...
概述 Pytorch多GPU训练本质上是数据并行,每个GPU上拥有整个模型的参数,将一个batch的数据均分成N份,每个GPU处理一份数据,然后将每个GPU上的梯度进行整合得到整个batch的梯度,用整合后的梯度更新所有GPU上的参数,完成一次迭代。 其中多gpu训练的方案有两种,一种是利用nn.DataParallel实现,这种方法是最早引入pytorch的,使用简单方便,不涉及多进程。另一种是 ...
2019-09-26 12:28 13 2550 推荐指数:
概述 本篇介绍多计算节点上的pytorch分布式训练。从环境配置到运行demo的所有步骤,step by step。没有理论原理,理论原理可以参考这里. 基础环境 多台linux计算节点,通过网络连接,不同主机之间可以相互ping通。网速越快越好,如果通信速度比较慢,就不用怎么考虑 ...
原文链接:https://zhuanlan.zhihu.com/p/353680367 此篇文章内容源自 Attention Is All You Need,若侵犯版权,请告知本人删帖。 原论文下载地址: https://papers.nips.cc/paper ...
Attention is all you need 3 模型结构 大多数牛掰的序列传导模型都具有encoder-decoder结构. 此处的encoder模块将输入的符号序列\((x_1,x_2,...,x_n)\)映射为连续的表示序列\({\bf z} =(z_1,z_2 ...
Transformer 最近看了Attention Is All You Need这篇经典论文。论文里有很多地方描述都很模糊,后来是看了参考文献里其他人的源码分析文章才算是打通整个流程。记录一下。 Transformer整体结构 数据流梳理 符号含义速查 N: batch size ...
Pytorch多GPU训练 临近放假, 服务器上的GPU好多空闲, 博主顺便研究了一下如何用多卡同时训练 原理 多卡训练的基本过程 首先把模型加载到一个主设备 把模型只读复制到多个设备 把大的batch数据也等分到不同的设备 最后将所有设备计算得到的梯度合并更新 ...
)model.to(device) 这样模型就会在gpu 0, 1, 2 上进行训练 ...
pytorch 多gpu训练 用nn.DataParallel重新包装一下 数据并行有三种情况 前向过程 只要将model重新包装一下就可以。 后向过程 在网上看到别人这样写了,做了一下测试。但是显存没有变化,不知道它的影响是怎样的。 更新学习率的时候也需要 ...
# 1: torch.cuda.set_device(1) # 2: device = torch.device("cuda:1") # 3:(官方推荐)import os os.environ["CUDA_VISIBLE_DEVICES"] = '1' (同时调用两块GPU的话 ...