前言 上一篇文章,我们讲解了图像的虚拟边缘,这篇文章开始进行平滑(也就是模糊)处理。 基本原理 这里直接引用OpenCV 2.4+ C++ 平滑处理和OpenCV 2.4+ C++ 边缘梯度计算的相关内容: 平滑也称模糊, 是一项简单且使用频率很高的图像处理方法。 平滑处理 ...
图像处理之图像的平滑与锐化概念:锐化就是通过增强高频分量来减少图象中的模糊,因此又称为高通滤波。锐化处理在增强图象边缘的同时增加了图象的噪声。平滑与锐化相反,就是滤掉高频分量,从而达到减少图象噪声,使图片变得有些模糊。一 灰度化灰度化,也就是黑白化,就是将图像进行黑白处理,使其失去色彩。而从像素点出发,就是使各个像素点的三种颜色分量R G B的值相同。 常用的黑白化的方法有三种: 第一种是最大值法 ...
2019-09-22 15:25 0 1324 推荐指数:
前言 上一篇文章,我们讲解了图像的虚拟边缘,这篇文章开始进行平滑(也就是模糊)处理。 基本原理 这里直接引用OpenCV 2.4+ C++ 平滑处理和OpenCV 2.4+ C++ 边缘梯度计算的相关内容: 平滑也称模糊, 是一项简单且使用频率很高的图像处理方法。 平滑处理 ...
数字图像处理之锐化处理 by方阳 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/6748411.html。 今天介绍图像 ...
关于具体在实际场景的使用和图像会慢慢更新。 梯度锐化方法 图像平滑往往使图像中的边界、轮廓变得模糊,为了减少影响,需要利用图像锐化技术,使边缘变得清晰。常用的方法有: 直接以梯度值代替 辅以门限判断 给边缘规定一个特定的灰度级 给背景规定灰度级 根据梯度二值化图像 ...
前文传送门: 「Python 图像处理 OpenCV (1):入门」 「Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像」 「Python 图像处理 OpenCV (3):图像属性、图像感兴趣 ROI 区域及通道处理 ...
图像平滑的目的 模糊:在提取较大目标前,去除太小细节,或将目标内的小间断连接起来。 消除噪声:改善图像质量,降低干扰。 平滑处滤波对图像的低频分量增强,同时削弱高频分量,用于消除图像中的随机噪声,起到平滑作用。 图像平滑处理的基本方法 领域平均法 领域 ...
一、何为图像噪声?噪声是妨碍人的感觉器官所接受信源信息理解的因素,是不可预测只能用概率统计方法认识的随机误差。 举个例子: 从这个图中,我们可以观察到噪声的特点:1>位置随机 2>大小不规则。我们将这种噪声称为随机噪声(random noise),这是一种 ...
前面介绍的几种滤波器都属于平滑滤波器(低通滤波器),用来平滑图像和抑制噪声的;而锐化空间滤波器恰恰相反,主要用来增强图像的突变信息,图像的细节和边缘信息。平滑滤波器主要是使用邻域的均值(或者中值)来代替模板中心的像素,消弱和邻域间的差别,以达到平滑图像和抑制噪声的目的;相反,锐化滤波器则使用邻域 ...
图像平滑从信号处理的角度看就是去除其中的高频信息,保留低频信息。因此我们可以对图像实施低通滤波。低通滤波可以去除图像中的噪音,模糊图像(噪音是图像中变化比较大的区域,也就是高频信息)。而高通滤波能够提取图像的边缘(边缘也是高频信息集中的区域)。 根据滤波器的不同又可以分为均值滤波,高斯加权滤波 ...