参考自《Pytorch autograd,backward详解》: 1 Tensor Pytorch中所有的计算其实都可以回归到Tensor上,所以有必要重新认识一下Tensor。 如果我们需要计算某个Tensor的导数,那么我们需要设置其.requires_grad属性为True。为方便 ...
平常都是无脑使用backward,每次看到别人的代码里使用诸如autograd.grad这种方法的时候就有点抵触,今天花了点时间了解了一下原理,写下笔记以供以后参考。以下笔记基于Pytorch . Tensor Pytorch中所有的计算其实都可以回归到Tensor上,所以有必要重新认识一下Tensor。如果我们需要计算某个Tensor的导数,那么我们需要设置其.requires grad属性为T ...
2019-09-19 14:45 1 3988 推荐指数:
参考自《Pytorch autograd,backward详解》: 1 Tensor Pytorch中所有的计算其实都可以回归到Tensor上,所以有必要重新认识一下Tensor。 如果我们需要计算某个Tensor的导数,那么我们需要设置其.requires_grad属性为True。为方便 ...
backward函数 官方定义: torch.autograd.backward(tensors, grad_tensors=None, retain_graph=None, create_graph=False, grad_variables=None) Computes the sum ...
在学习的过程中遇见了一个问题,就是当使用backward()反向传播时传入参数的问题: 这里的backward()中为什么需要传入参数Variable(t.ones(1, 10))呢?没有传入就会报错: 这个错误的意思就是梯度只能为标量(即一个数)输出隐式地创建 ...
首先看这个自动求导的参数: grad_variables:形状与variable一致,对于y.backward(),grad_variables相当于链式法则dzdx=dzdy×dydx">dz/dx=dz/dy × dy/dx 中的 dz \over dy ...
retain_graph参数的作用 官方定义: retain_graph (bool, optional) – If False, the graph used to compute the gr ...
在PyTorch中,autograd是所有神经网络的核心内容,为Tensor所有操作提供自动求导方法。 它是一个按运行方式定义的框架,这意味着backprop是由代码的运行方式定义的。 一、Variable autograd.Variable 是autograd中最核心的类。 它包装了一个 ...
转自:https://sherlockliao.github.io/2017/07/10/backward/ backward只能被应用在一个标量上,也就是一个一维tensor,或者传入跟变量相关的梯度。 特别注意Variable里面默认的参数requires_grad=False ...
这个函数的作用是反向传播计算梯度的。 这个只有标量才能直接使用 backward(),如果使用自定义的函数,得到的不是标量,则backward()时需要传入 grad_variable 参数。 torch.tensor是autograd包的基础类,如果你设置tensor ...