归为基于策略的增强学习方法。 此外,增强学习方法还有基于价值以及基于模型两类主要方法。本文介绍第二类,先从 ...
这篇写的是不太对的,详细还是找个靠谱的吧 一些说明 参阅 https: github.com MorvanZhou Reinforcement learning with tensorflow blob master contents command line reinforcement learning treasure on right.py https: github.com simonin ...
2019-09-13 20:32 0 1617 推荐指数:
归为基于策略的增强学习方法。 此外,增强学习方法还有基于价值以及基于模型两类主要方法。本文介绍第二类,先从 ...
假设有这样的房间 如果将房间表示成点,然后用房间之间的连通关系表示成线,如下图所示: ...
1. 前言 Q-Learning算法也是时序差分算法的一种,和我们前面介绍的SARAS不同的是,SARSA算法遵从了交互序列,根据当前的真实行动进行价值估计;Q-Learning算法没有遵循交互序列,而是在当前时刻选择了使价值最大的行动。 2. Q-Learning Q-Learning算法 ...
许久没有更新重新拾起,献于小白 这次介绍的是强化学习 Q-learning,Q-learning也是离线学习的一种 关于Q-learning的算法详情看 传送门 下文中我们会用openai gym来做演示 简要 q-learning的伪代码先看这部分,很重要 简单 ...
https://blog.csdn.net/Young_Gy/article/details/73485518 强化学习在alphago中大放异彩,本文将简要介绍强化学习的一种q-learning。先从最简单的q-table下手,然后针对state过多的问题引入q-network,最后通过两个 ...
在上一篇博客中,我们详细的对Q-learning的算法流程进行了介绍。同时我们使用了\(\epsilon-贪婪法\)防止陷入局部最优。 那么我们可以想一下,最后我们得到的结果是什么样的呢?因为我们考虑到了所有的(\(\epsilon-贪婪法\)导致的)情况,因此最终我们将会得到一张 ...
什么是强化学习? 强化学习(Reinforcement learning,简称RL)是和监督学习,非监督学习并列的第三种机器学习方法,如下图示: 首先让我们举一个小时候的例子: 你现在在家,有两个动作选择:打游戏和读书。如果选择打游戏的话,你就跑到了网吧,选择读书的话,就坐在了书桌 ...
强化学习基本介绍 强化学习是一种不同于监督学习和无监督学习的在线学习技术,基本模型图一所示。它把学习看作是一个“试探一评价”的过程,首先学习系统称为智能体感知环境状态,采取某一个动作作用于环境,环境接受该动作后状态发生变化,同时给出一个回报奖励或惩罚反馈给强化学习系统,强化学系统根据强化信号 ...