1. 关于全局最优化求解 全局最优化是一个非常复杂的问题,目前还没有一个通用的办法可以对任意复杂函数求解全局最优值。上一篇文章讲解了一个求解局部极小值的方法——梯度下降法。这种方法对于求解精度不高的情况是实用的,可以用局部极小值近似替代全局最小值点。但是当要求精确求解全局最小值时,梯度下降 ...
介绍一个全局最优化的方法:随机游走算法 Random Walk 年 月 日 : : ggabcda阅读数 . 关于全局最优化求解 全局最优化是一个非常复杂的问题,目前还没有一个通用的办法可以对任意复杂函数求解全局最优值。上一篇文章讲解了一个求解局部极小值的方法 梯度下降法。这种方法对于求解精度不高的情况是实用的,可以用局部极小值近似替代全局最小值点。但是当要求精确求解全局最小值时,梯度下降法就不 ...
2019-09-12 21:26 0 338 推荐指数:
1. 关于全局最优化求解 全局最优化是一个非常复杂的问题,目前还没有一个通用的办法可以对任意复杂函数求解全局最优值。上一篇文章讲解了一个求解局部极小值的方法——梯度下降法。这种方法对于求解精度不高的情况是实用的,可以用局部极小值近似替代全局最小值点。但是当要求精确求解全局最小值时,梯度下降 ...
参考: https://www.cnblogs.com/lyrichu/p/7209529.html ...
给定了一个时间顺序向量\(z_1,...,z_T\),rw模型是由次序r来定义的,\(z_t\)仅取决于前\(t-r\)个元素。当r = 1时为最简单的RW模型。 给定了向量的其他元素,\(z_t\)的条件分布为: \(z_t|z_{t-1} ~ Normal(z_{t-1} ,\sigma^2)\) ...
首先以一维随机游走(1D Random Walks)为例来介绍下随机游走(Random Walks)算法,如下图所示,从某点出发,随机向左右移动,向左和向右的概率相同,都为1/2,并且到达0点或N点则不能移动,那么如何求该点到达目的地N点的概率。 该问题可以描述为如下数学形式: P ...
原文链接:http://tecdat.cn/?p=19688 在引入copula时,大家普遍认为copula很有趣,因为它们允许分别对边缘分布和相依结构进行建模。 copula建模边缘和相依关系 给定一些边缘分布函数和一个copula,那么我们可以生成 ...
思路:线搜索最优化算法,一般是先确定迭代方向(下降方向),然后确定迭代步长; 信赖域方法直接求得迭代位移; 算法分析 第\(k\)次迭代,确定迭代位移的问题为(信赖域子问题): \[min q_k(d)=g_k^Td+\frac{1}{2}d^TB_kd_k ...
随机游走 几何布朗运动 几何布朗运动(Brownian motion) 布朗运动是将看起来连成一片的液体,在高倍显微镜下看其实是由许许多多分子组成的。液体分子不停地做无规则的运动,不断地随机撞击悬浮微粒。当悬浮的微粒足够小的时候,由于受到的来自各个方向的液体分子的撞击作用是不平衡 ...