摘要: 两篇文档是否相关往往不只决定于字面上的词语重复,还取决于文字背后的语义关联。对语义关联的挖掘,可以让我们的搜索更加智能化。本文着重介绍了一个语义挖掘的利器:主题模型。主题模型是对文字隐含主题进行建模的方法。它克服了传统信息检索中文档相似度计算方法的缺点,并且能够在海量互联网数据中自动 ...
判断文档相似性的传统方法是通过查看两个文档共同出现的词项 terms,不重复的words 有多少,如TF IDF等。但这种方法没有考虑到文字背后的语义关联,可能在两个文档共同出现的词项很少甚至没有,但两个文档是相似的。 TF IDF是Term Frequency Inverse Document Frequency的缩写,即 词频 逆文本频率 。它由两部分组成,TF和IDF。前面的TF也就是我们前 ...
2019-09-02 21:24 0 829 推荐指数:
摘要: 两篇文档是否相关往往不只决定于字面上的词语重复,还取决于文字背后的语义关联。对语义关联的挖掘,可以让我们的搜索更加智能化。本文着重介绍了一个语义挖掘的利器:主题模型。主题模型是对文字隐含主题进行建模的方法。它克服了传统信息检索中文档相似度计算方法的缺点,并且能够在海量互联网数据中自动 ...
主题模型(topic modeling)是一种常见的机器学习应用,主要用于对文本进行分类。传统的文本分类器,例如贝叶斯、KNN和SVM分类器,只能将测试对象分到某一个类别中,假设我给出三个分类:“算法”、“网络”和“编译”让其判断,这些分类器往往将对象归到某一类中。 但是如果一个外行完全给不出 ...
http://blog.csdn.net/pipisorry/article/details/45665779 主题模型LDA的应用 拿到这些topic后继续后面的这些应用怎么做呢:除了推断出这些主题,LDA还可以推断每篇文章在主题上的分布。例如,X文章大概有60%在讨论 ...
主题模型 主题模型这样理解一篇文章的生成过程: 1、 确定文章的K个主题。 2、 重复选择K个主题之一,按主题-词语概率生成词语。 3、 所有词语组成文章。 这里可以看到,主题模型仅仅考虑词语的数量,不考虑词语的顺序,所以主题模型是词 ...
最近做文本匹配算法比赛遇到LDA抽取特征,故结合西瓜书,总结一下LDA LDA用生成式模型的角度来看待文档和主题。假设每篇文档包含了多个主题,用θd表示文档t每个话题所占比例,θd,k表示文档t中包含主题d所占用的比例,继而通过如下过程生成文档d。 (1)根据参数为α的狄利克雷分布,随机 ...
简述LDA 什么是LDA主题模型 主题分布与词分布 两点分布 二项分布 多项式分布 参数估计 ...
目录 LDA 主题模型 几个重要分布 模型 Unigram model Mixture of unigrams model PLSA模型 LDA 怎么确定LDA ...
随着互联网的发展,文本分析越来越受到重视。由于文本格式的复杂性,人们往往很难直接利用文本进行分析。因此一些将文本数值化的方法就出现了。LDA就是其中一种很NB的方法。 LDA有着很完美的理论支撑,而且 ...