在这里学习的,在此简要做了些笔记。 壹、可解释性概述 1. 可解释性是什么 人类对模型决策/预测结果的理解程度。 对于深度学习而言,可解释性面临两个问题:①为甚会得到该结果?(过程)②为甚结果应该是这个?(结果) 理想状态:通过溯因推理,计算出输出结果,可是实现较好的模型解释性。 衡量一个 ...
NIPS 深度高斯模型 可能为深度学习的可解释性提供概率形式的理论指导 亚马逊机器学习专家最新报告 专知 导读 在NIPS 上,亚马逊机器学习专家Neil Lawrence在 月 日在长滩现场进行了一场 基于高斯模型的深度概率模型 的演讲报告。这场报告Neil Lawrence形象化地讲解了使用高斯过程来建模深度网络,并且深入浅出地讲解了什么是机器学习,不确定性的含义以及深度神经网络和高斯过程的 ...
2019-09-02 07:50 0 373 推荐指数:
在这里学习的,在此简要做了些笔记。 壹、可解释性概述 1. 可解释性是什么 人类对模型决策/预测结果的理解程度。 对于深度学习而言,可解释性面临两个问题:①为甚会得到该结果?(过程)②为甚结果应该是这个?(结果) 理想状态:通过溯因推理,计算出输出结果,可是实现较好的模型解释性。 衡量一个 ...
1. 可解释性是什么 0x1:广义可解释性 广义上的可解释性指: 比如我们在调试 bug 的时候,需要通过变量审查和日志信息定位到问题出在哪里。 比如在科学研究中面临一个新问题的研究时,我们需要查阅一些资料来了解这个新问题的基本概念和研究现状,以获得对研究方向的正确认识 ...
深度学习一直被认为是一个黑盒子,但是试图对模型的理解仍然是非常必要的。先从一个例子来说明解释神经网络的重要性:古代一个小镇上的一匹马能够做数学题,比如给它一个题目 2+3 ,它踏马蹄 5 下后就会停下,这匹马被当地称作神马汉斯。后来人们发现,汉斯其实并不会做数学题,它通过观察主人的反应来判断 ...
神经网络可解释性、深度学习新方法, 2020 年有哪些势不可挡的研究趋势? 编辑:Sophia计算机视觉联盟 报道 | 公众号 CVLianMeng 转载于 :AI科技评论 AI博士笔记系列推荐: 博士笔记 | 周志华《机器学习》手推笔记“神经网络” 作为 2019 年最后一场 ...
与模型无关的局部可解释性方法(LIME) 在机器学习模型事后局部可解释性研究中,一种代表性方法是由Marco Tulio Ribeiro等人提出的Local Interpretable Model-Agnostic Explanation(LIME)。 一般地,对于每一个输入实例,LIME ...
1. Main Point 0x1:行文框架 第二章:我们会分别介绍NNs神经网络和PR多项式回归各自的定义和应用场景。 第三章:讨论NNs和PR在数学公式上的等价性,NNs和PR是两个等价的理论方法,只是用了不同的方法解决了同一个问题,这样我们就形成了一个统一的观察视角,不再将深度 ...
一、模型可解释性 近年来,机器学习(深度学习)取得了一系列骄人战绩,但是其模型的深度和复杂度远远超出了人类理解的范畴,或者称之为黑盒(机器是否同样不能理解?),当一个机器学习模型泛化性能很好时,我们可以通过交叉验证验证其准确性,并将其应用在生产环境中,但是很难去解释这个模型为什么会做 ...