假定我们要拟合的线性方程是:\(y=2x+1\) \(x\):[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14] \(y\):[1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29 ...
直接奉献代码,后期有入门更新,之前一直在学的是TensorFlow, import torch from torch.autograd import Variable import torch.nn.functional as F import matplotlib.pyplot as plt import numpy as np x data np.arange np.pi, np.pi, . ...
2019-08-16 22:56 0 515 推荐指数:
假定我们要拟合的线性方程是:\(y=2x+1\) \(x\):[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14] \(y\):[1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29 ...
import pandas as pdf = open('C:/Users/24339/Desktop/zhengqi_train.csv')df=pd.read_csv(f)df from ...
从线性回归(Linear regression)开始学习回归分析,线性回归是最早的也是最基本的模型——把数据拟合成一条直线。数据集使用scikit-learn里的数据集boston,boston数据集很适合用来演示线性回归。boston数据集包含了波士顿地区的房屋价格中位数。还有一些可能会影响房价 ...
autograd 及Variable Autograd: 自动微分 autograd包是PyTorch中神经网络的核心, 它可以为基于tensor的的所有操作提供自动微分的功能, 这是一个逐个运行的框架, 意味着反向传播是根据你的代码来运行的, 并且每一次的迭代运行都可能不 ...
关于什么是线性回归,不多做介绍了.可以参考我以前的博客https://www.cnblogs.com/sdu20112013/p/10186516.html 实现线性回归 分为以下几个部分: 生成数据集 读取数据 初始化模型参数 定义模型 定义损失函数 定义优化算法 ...
简化模型: 假设1:影响房价的关键因素是卧室个数,卫生间个数和居住面积,记为x1,x2,x3 假设2:成交价是关键因素的加权和。 y = w1x1+w2x2+w3x3 权重和偏差的实际值在后面决定 线性模型 给定n维输入x = [x1,x2,...,xn]^T 线性 ...
在Python中使用线性回归算法 Scikit-Learn 涵盖了主流的机器学习算法,我们先介绍常用的几个库: lienar_model:线性模型算法库,包括Logistic回归算法等; neighbors:最邻近算法库; naive-bayes:朴素贝叶斯算法库; tree ...
线性回归模型(Linear Regression)及Python实现 http://www.cnblogs.com/sumai 1.模型 对于一份数据,它有两个变量,分别是Petal.Width和Sepal.Length,画出它们的散点图。我们希望可以构建一个函数去预测 ...