代码文件结构 bbox_transform.py # bounding box变换。 generate_anchors.py # 生成anchor,根据几种尺度和比例生成的anchor。 proposal_layer.py # 通过将估计的边界框变换应用于一组常规框 ...
非极大值抑制 Non Maximum Suppression NMS NMS就是去除冗余的检测框,保留最好的一个。 产生proposal后使用分类网络给出每个框的每类置信度,使用回归网络修正位置,最终应用NMS. 对于Bounding Box的列表B及其对应的置信度S,采用下面的计算方式.选择具有最大score的检测框M,将其从B集合中移除并加入到最终的检测结果D中.通常将B中剩余检测框中与M的I ...
2019-08-15 19:16 0 562 推荐指数:
代码文件结构 bbox_transform.py # bounding box变换。 generate_anchors.py # 生成anchor,根据几种尺度和比例生成的anchor。 proposal_layer.py # 通过将估计的边界框变换应用于一组常规框 ...
注释Yang Jianwei 的Faster R-CNN代码(PyTorch) jwyang’s github: https://github.com/jwyang/faster-rcnn.pytorch 文件demo.py 这个文件是自己下载好训练好的模型后可执行 下面是对代码的详细 ...
Faster R-CNN源代码中faster_rcnn文件夹中包含三个文件 faster_rcnn.py,resnet.py,vgg16.py。 1.faster_rcnn.py注释 ref:https://blog.csdn.net/weixin_43872578 ...
这一篇单独拿出来了解一下roi_pooling/src/roi_pooling.c中C代码: 说明我查过一些,但没有查到太多有用的信息,连百度#include <TH/TH.h>都百度不出太多信息,更不知道THFloatTensor_data,THFloatTensor_size具体 ...
pooling和roi align可参考‘AI深度学习求索’ https://baijiahao.b ...
roi_pooling理解起来比较简单,所以我就先看了一下这部分的代码。 roi_pooling目录下 -src文件夹下是c和cuda版本的源码。 -functions文件夹下的roi_pool.py是继承了torch.autograd.Function类,实现RoI层的foward ...
 目标检测的复杂性由如下两个因素引起, 1. 大量的候选框需要处理, 2. 这些候选框的定位是很粗糙的, 必须被微调 Faster R-CNN 网络将提出候选框的网络(RPN)和检测网络(Fast R-CNN)融合到一个网络架构中, 从而很优雅的处理上面的两个问题, 即候选框的提出和候选框 ...
主要参考文章:1,从编程实现角度学习Faster R-CNN(附极简实现) 经常是做到一半发现收敛情况不理想,然后又回去看看这篇文章的细节。 另外两篇: 2,Faster R-CNN学习总结 这个主要是解释了18, 36是怎么算的 3,目标检测中region proposal ...