梯度算法之梯度上升和梯度下降 方向导数 当讨论函数沿任意方向的变化率时,也就引出了方向导数的定义,即:某一点在某一趋近方向上的导数值。 导数和偏导数的定义中,均是沿坐标轴正方向讨论函数的变化率。那么当讨论函数沿任意方向的变化率时,也就引出了方向导数的定义,即:某一点在某一趋近 ...
梯度上升法每次讲当前参数向每个特征的梯度移动一小部分,经过多次迭代得到最后的解,在梯度上升的时候可以采用随机取样,虽然效果差不多,但是可以占用更少的计算资源,同时随机梯度上升法是一个在线算法,他可以在新数据到来时就可以完成参数更新,而不需要重新读取整个数据集来进行批处理计算。 参考链接: https: blog.csdn.net c article details 解决了为什么梯度上升只需要用er ...
2019-08-11 16:45 0 440 推荐指数:
梯度算法之梯度上升和梯度下降 方向导数 当讨论函数沿任意方向的变化率时,也就引出了方向导数的定义,即:某一点在某一趋近方向上的导数值。 导数和偏导数的定义中,均是沿坐标轴正方向讨论函数的变化率。那么当讨论函数沿任意方向的变化率时,也就引出了方向导数的定义,即:某一点在某一趋近 ...
警告:本文为小白入门学习笔记 由于之前写过详细的过程,所以接下来就简单描述,主要写实现中遇到的问题。 数据集是关于80人两门成绩来区分能否入学: 数据集: http://openclassro ...
R语言︱XGBoost极端梯度上升以及forecastxgb(预测)+xgboost(回归)双案例解读 XGBoost不仅仅可以用来做分类还可以做时间序列方面的预测,而且已经有人做的很好,可以见最后的案例。 应用 ...
回顾: 梯度下降 梯度下降和梯度上升区别 一:加载数据和实现sigmoid函数(同梯度下降) 二:实现批量梯度上升(重点) (一)代码实现 (二)结果预测 三:绘制图像决策边界 四:随机梯度下降法 (一)简陋版随机 ...
一个典型的机器学习的过程,首先给出一组输入数据X,我们的算法会通过一系列的过程得到一个估计的函数,这个函数有能力对没有见过的新数据给出一个新的估计Y,也被称为构建一个模型。 我们用X1、X2...X ...
最近学习Logistic回归算法,在网上看了许多博文,笔者觉得这篇文章http://blog.kamidox.com/logistic-regression.html写得最好。但其中有个关键问题没有讲清楚:为什么选择-log(h(x))作为成本函数(也叫损失函数)。 和线性回归算法相比,逻辑回归 ...
1 逻辑回归 逻辑回归是一个用于二分类(binary classification)的算法,以在二分类问题中,我们的目标就是习得一个分类器,它以图片的特征向量作为输入,然后预测输出结果 y 为 1 还是 0。 逻辑回归的公式定义如下: 损失函数: 代价函数: 1.1逻辑 ...