上一章我们训练了一个浅层神经网络,只要两个隐层。但如果处理复杂的问题,例如从高分辨率图像中识别上百种类的物品,这就需要训练一个深度DNN。也行包含十层,每层上百个神经元,几十万个连接。这绝不是闹着玩的: 首先,需要面对梯度消失(或者相对的梯度爆炸)问题,这会导致浅层很难被训练 ...
论文:https: arxiv.org pdf . .pdf 译文:深度神经网络分布式训练指引 摘要 深度学习让人工智能领域取得了很大的进步。但是训练这些深度学习模型需要大量的计算。单机单卡训练ImageNet需要一周。多机分布式训练可以极大地减少训练时间。最近,有 个GPU的一个集群,把训练ImageNet的时间减少到 min。本文调研分布式训练的各种算法和技术,并且提出一个效果最好的分布式训练 ...
2019-08-09 11:35 0 576 推荐指数:
上一章我们训练了一个浅层神经网络,只要两个隐层。但如果处理复杂的问题,例如从高分辨率图像中识别上百种类的物品,这就需要训练一个深度DNN。也行包含十层,每层上百个神经元,几十万个连接。这绝不是闹着玩的: 首先,需要面对梯度消失(或者相对的梯度爆炸)问题,这会导致浅层很难被训练 ...
转自:https://blog.csdn.net/xs11222211/article/details/82931120#commentBox 本系列博客主要介绍使用Pytorch和TF进行分布式训练,本篇重点介绍相关理论,分析为什么要进行分布式训练。后续会从代码 ...
的问题:(好吧,这块受训练水平的影响,还是借鉴另一篇博客的翻译:神经网络六大坑) 1,you d ...
在前面的博客人工神经网络入门和训练深度神经网络,也介绍了与本文类似的内容。前面的两篇博客侧重的是如何使用TensorFlow实现,而本文侧重相关数学公式及其推导。 1 神经网络基础 1.1 单个神经元 一个神经元就是一个计算单元,传入$n$个输入,产生一个输出,再应用于激活函数。记$n$维 ...
来了:当 GPU 的内存不够时,如何使用大批量(large batch size)样本来训练神经网络呢? ...
[源码解析] 深度学习分布式训练框架 horovod (4) --- 网络基础 & Driver 目录 [源码解析] 深度学习分布式训练框架 horovod (4) --- 网络基础 & Driver 0x00 摘要 0x01 引子 ...
...
为什么要加速神经网络,数据量太大,学习效率太慢。越复杂的神经网络 , 越多的数据,需要在训练神经网络的过程上花费的时间也就越多。原因很简单,就是因为计算量太大了。可是往往有时候为了解决复杂的问题,复杂的结构和大数据又是不能避免的,所以需要寻找一些方法, 让神经网络训练变得快起来。为了便于理解 ...