目录: 1、什么是group convolution? 和普通的卷积有什么区别? 2、分析计算量、flops 3、分析参数量 4、相比于传统普通卷积有什么优势以及缺点,有什么改进方法? 5、reference 1、group convolution历史 ...
目录: 什么是depthwise separable convolution 分析计算量 flops 参数量 与传统卷积比较 reference ...
2019-08-05 16:12 0 382 推荐指数:
目录: 1、什么是group convolution? 和普通的卷积有什么区别? 2、分析计算量、flops 3、分析参数量 4、相比于传统普通卷积有什么优势以及缺点,有什么改进方法? 5、reference 1、group convolution历史 ...
https://zhuanlan.zhihu.com/p/28186857 这个例子说明了什么叫做空间可分离卷积,这种方法并不应用在深度学习中,只是用来帮你理解这种结构。 在神经网络中,我们通常会使用深度可分离卷积结构(depthwise separable convolution)。 这种 ...
按照普通卷积-深度卷积-深度可分离卷积的思路总结。 depthwise_conv2d来源于深度可分离卷积,如下论文: Xception: Deep Learning with Depthwise Separable Convolutions 函数定义 ...
接下来要分别概述以下内容: 1 首先什么是参数量,什么是计算量 2 如何计算 参数量,如何统计 计算量 3 换算参数量,把他换算成我们常用的单位,比如:mb 4 对于各个经典网络,论述他们是计算量大还是参数两,有什么好处 5 计算量,参数量分别对显存,芯片提出什么要求 ...
普通卷积 输入卷积:Win * Hin * Cin卷积核:k * k 输出卷积:Wout * Hout * Cout 参数量:(即卷积核的参数)k * k * Cin * Cout或者:(k * k * Cin + 1) * Cout (包括偏置bias)计算量:k * k * Cin ...
上次读到深度可分卷积还是去年暑假,各种细节都有些忘了。记录一下,特别是计算量的分析过程。 1. 标准卷积和深度可分卷积 标准卷积(MobileNet论文中称为Standard Convolution,如下图所示)将N个大小(边长)为\(D_{k}\)、通道数为M的卷积核作用于大小为\(D_ ...
参考: 1. CNN 模型所需的计算力(flops)和参数(parameters)数量是怎么计算的? 2. TensorFlow 模型浮点数计算量和参数量统计 3. How fast is my model? 计算公式 理论上的计算公式如下: \begin{equation ...
目录: 1、经典的卷积层是如何计算的 2、分析卷积层的计算量 3、分析卷积层的参数量 4、pytorch实现自动计算卷积层的计算量和参数量 1、卷积操作如下: http://cs231n.github.io/assets/conv-demo/index.html 假设 ...