最优化 随着大数据的到来,并行计算的流行,实际上机器学习领域的很多研究者会把重点放在最优化方法的研究上,如large scale computation。那么为什么要研究最优化呢?我们先从机器学习研究的目的说起。机器学习理论主要是设计和分析一些让计算机可以自动“学习”的算法,这些算法可以从数据中 ...
多元线性回归算法和正规方程解 燕江依 . . 对于多元线性回归算法,它对于数据集具有较好的可解释性,我们可以对比不过特征参数的输出系数的大小来判断它对数据的影响权重,进而对其中隐含的参数进行扩展和收集,提高整体训练数据的准确性。 对于KNN算法和多元线性回归算法对比可以知道,KNN算法是一种非参数学习的算法,而多元线性回归算法是一种参数学习的算法,另外KNN算法没有数据的假设前提,而多元线性回归算 ...
2019-08-05 13:54 0 552 推荐指数:
最优化 随着大数据的到来,并行计算的流行,实际上机器学习领域的很多研究者会把重点放在最优化方法的研究上,如large scale computation。那么为什么要研究最优化呢?我们先从机器学习研究的目的说起。机器学习理论主要是设计和分析一些让计算机可以自动“学习”的算法,这些算法可以从数据中 ...
【机器学习】算法原理详细推导与实现(一):线性回归 今天我们这里要讲第一个有监督学习算法,他可以用于一个回归任务,这个算法叫做 线性回归 房价预测 假设存在如下 m 组房价数据: 面积(m^2) 价格(万元) 82.35 ...
0.线性回归 做为机器学习入门的经典模型,线性回归是绝对值得大家深入的推导实践的,而在众多的模型中,也是相对的容易。线性回归模型主要是用于线性建模,假设样本的特征有n个,我们通常将截距项也添加到特征向量x中,即在x中添加一个全为1的列,这是,我们就能够将模型表示为如下的形式: 1.残差 ...
什么是多元线性回归? 在线性回归分析中,如果有两个或两个以上的自变量,就称为多元线性回归(multivariable linear regression)。如果我们要预测一套房子的价格,影响房子价格的因素可能包括:面积、卧室数量、层数以及房龄,我们用x1、x2、x3、x4来代表这4个特征 ...
1. 与简单线性回归的区别 多个自变量(x) 2. 多元回归模型 其中,是参数,是误差值,截面 3. 多元回归方程 4. 估计多元回归方程 一个样本被用来计算的点估计 5. 估计流程(与简单线性回归 ...
机器学习疑难---1、什么是多元线性回归 一、总结 一句话总结: 多元线性回归就是 用多个x(变量或属性)与结果y的关系式来描述一些散列点之间的共同特性。 也可以逐词来理解:多元就是有多个变量或属性,线性就是一条线,回归就是输入变量与输出变量均为连续变量的预测问题 ...
一、不包含分类型变量 from numpy import genfromtxtimport numpy as npfrom sklearn import datasets,linear_mode ...
//2019.08.06 机器学习算法中的梯度下降法(gradient descent)1、对于梯度下降法,具有以下几点特别说明:(1)不是一种机器学习算法,不可以解决分类 ...